Skip to main content
Log in

Phenoptosis in arthropods and immortality of social insects

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Whoever dies having reached the ultimate life limit has no advantages compared to the one dying prematurely.

Marcus Aurelius

The one who has failed to provide for grandchildren is a parasite.

Joke

Abstract

In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread — conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of generations leading to increased evolvability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skulachev, V. P., Skulachev, M. V., and Feniuk, B. A. (2014) Life without Aging [in Russian], MGU, Moscow.

    Google Scholar 

  2. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  3. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  4. Kartsev, V. M. (2013) New concept of life: social insects, Otech. Zapiski, 56, 119–133.

    Google Scholar 

  5. Lange, A. B. (1969) Subtype Chelicerata, in Animal Life (Zenkevich, L. A., ed.) [in Russian], Vol. 3, Prosveshchenie, Moscow, pp. 10–134.

    Google Scholar 

  6. Bey-Biyenko, G. Ya. (1980) General Entomology [in Russian], Vysshaya Shkola, Moscow.

    Google Scholar 

  7. Tyshchenko, V. P. (1986) Physiology of Insects [in Russian], Vysshaya Shkola, Moscow.

    Google Scholar 

  8. Chernyshev, V. B. (1996) Ecology of Insects [in Russian], MGU, Moscow.

    Google Scholar 

  9. Tarasov, V. V. (1996) Medical Entomology [in Russian], MGU, Moscow.

    Google Scholar 

  10. Dawkins, R. (1989) The evolution of evolvability, in Artificial Life Proceedings (Langton, C., ed.) Addison Wesley, Massachusetts, pp. 201–220.

    Google Scholar 

  11. Mitteldorf, J. (2013) Suicide Genes, Oxford Press.

    Google Scholar 

  12. Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.

    Article  CAS  Google Scholar 

  13. Zaynullin, V. G., Moskalev, A. A., Shaposhnikov, M. V., and Taskayev, A. I. (1999) Modern aspects of radiobiology of Drosophila melanogaster. Apoptosis and aging, Radiats. Biol. Radioekol., 39, 49–57.

    Google Scholar 

  14. Ridgel, A. L., and Ritzmann, R. E. (2005) Insights into age-related locomotor declines from studies of insects, Ageing Res. Rev., 4, 23–39.

    Article  PubMed  Google Scholar 

  15. Moskalev, A. A. (2009) Promising directions in the genetics of aging and life expectancy, Uspekhi Gerontol., 22, 92–103.

    CAS  Google Scholar 

  16. Ridgel, A. L., Ritzmann, R. E., and Schaefer, P. L. (2003) Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach, J. Exp. Biol., 206, 4453–4465.

    Article  PubMed  CAS  Google Scholar 

  17. Schaefer, P. L., Kondagunta, G. V., and Ritzmann, R. E. (1994) Motion analysis of escape movements evoked by tactile stimulation in the cockroach Periplaneta americana, J. Exp. Biol., 190, 287–294.

    PubMed  CAS  Google Scholar 

  18. Schaefer, P., and Ritzmann, R. (2001) Descending influences on escape behavior and motor pattern in the cockroach, J. Neurobiol., 49, 9–28.

    Article  PubMed  CAS  Google Scholar 

  19. Ridgel, A. L., Ritzmann, R. E., and Schaefer, P. L. (2003) Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach, J. Exp. Biol., 206, 4453–4465.

    Article  PubMed  CAS  Google Scholar 

  20. Haspel, G., and Libersat, F. (2003) Wasp venom blocks central cholinergic synapses to induce transient paralysis in cockroach prey, J. Neurobiol., 54, 628–637.

    Article  PubMed  CAS  Google Scholar 

  21. Le Bourg, E. (1987) The rate of living theory, spontaneous locomotor activity, aging and longevity in Drosophila melanogaster, Exp. Geront., 22, 359–369.

    Article  Google Scholar 

  22. Le Bourg, E., Lints, F., Fresquet, N., and Bullens, P. (1993) Hypergravity, aging and longevity in Drosophilia melanogaster, Comp. Biochem. Physiol., 105, 389–396.

    Article  Google Scholar 

  23. Le Bourg, E., and Minois, N. (1999) A mild stress, hypergravity exposure, postpones behavioral aging in Drosophilia melanogaster, Exp. Gerontol., 34, 157–172.

    Article  PubMed  Google Scholar 

  24. Martin, J., Ernst, R., and Heisenberg, M. (1999) Temporal pattern of locomotor activity in Drosophilia melanogaster, J. Comp. Physiol., 184, 73–84.

    Article  CAS  Google Scholar 

  25. Minois, N., Khazaeli, A. A., and Curtsinger, J. W. (2001) Locomotor activity as a function of age and life span in Drosophila melanogaster overexpressing hsp70, Exp. Gerontol., 22, 359–369.

    Google Scholar 

  26. Plyusnina, E. N., Shaposhnikov, M. V., and Moskalev, A. A. (2011) Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system, Biogerontology, 12, 211–226.

    Article  PubMed  CAS  Google Scholar 

  27. Moskalev, A. A., Smit-McBride, Z., Shaposhnikov, M. V., Plyusnina, E. N., Zhavoronkov, A., Budovsky, A., Tacutu, R., and Fraifeld, V. E. (2012) Gadd45 proteins: relevance to aging, longevity and age-related pathologies, Ageing Res. Rev., 11, 51–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Seyfulina, R. R., and Kartsev, V. M. (2011) Spiders of Central Russia: Atlas-Identifier [in Russian], Fiton+, Moscow.

    Google Scholar 

  29. Finch, C. E. (1990) Longevity, Senescence, and the Genome, University of Chicago Press, Chicago.

    Google Scholar 

  30. Finch, C. E. (1998) Variations in senescence and longevity include the possibility of negligible senescence, J. Gerontol., 53, 235–239.

    Article  Google Scholar 

  31. Zhuzhikov, D. P. (1979) Termites of the USSR [in Russian], MGU, Moscow.

    Google Scholar 

  32. Berezin, M. V. (2012) Venezuelan leaf-cutting ants Atta laevigata, in Encyclopedia of Animals (Blokhin, G. I., ed.) [in Russian], ROOSSA, Moscow.

    Google Scholar 

  33. Seehuus, S. C., Norberg, K., Gimsa, U., Krekling, T., and Amdam, G. V. (2006) Reproductive protein protects sterile honey bee workers from oxidative stress, Proc. Natl. Acad. Sci. USA, 103, 962–967.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Corona, M., Velarde, R. A., Remolina, S., Moran-Lauter, A., Wang, Y., Hughes, K. A., and Robinson, G. E. (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity, Proc. Natl. Acad. Sci. USA, 104, 7128–7133.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.

    Article  CAS  Google Scholar 

  36. Filippov, B. Yu. (2007) Seasonal patterns of life cycle of ground beetle Carabus nitens (Coleoptera, Carabidae) in Southern tundra, Biol. Bull., 6, 577–582.

    Article  Google Scholar 

  37. Mamaev, B. M. (1969) Suborder Polyphaga, in Life of Animals (Zenkevich, L. A., ed.) [in Russian], Vol. 3, Prosveshchenie, Moscow, pp. 314–372.

    Google Scholar 

  38. Ivanov, A. V. (1965) Spiders, Their Structure, Way of Life and Significance for People [in Russian], LGU, Leningrad.

    Google Scholar 

  39. Metchnikow, I. I. (1961) Nature of Man [in Russian], Izdatel’stvo Akademii Nauk SSSR, Moscow.

    Google Scholar 

  40. Ryazanova, G. I. (2013) Order mayflies — Ephemeroptera, in Insects of the European Part of Russia: Atlas with an Overview of Biology (Kartsev, V. M., Farafonova, G. V., Akhatov, A. K., Belyaeva, N. V., Benediktov, A. A., Berezin, M. V., Volkov, O. G., Gura, N. A., Lopatina, Yu. V., Lyutikova, L. I., Prosvirov, A. S., Ryazanova, G. I., Tkacheva, Ye. Yu., and Albrekht, P. V., eds.) [in Russian], Fiton XXI, Moscow, pp. 48–54.

    Google Scholar 

  41. Tkacheva, Ye. Yu. (2013) Order butterflies — Lepidoptera, in Insects of the European Part of Russia: Atlas with an Overview of Biology (Kartsev, V. M., Farafonova, G. V., Akhatov, A. K., Belyaeva, N. V., Benediktov, A. A., Berezin, M. V., Volkov, O. G., Gura, N. A., Lopatina, Yu. V., Lyutikova, L. I., Prosvirov, A. S., Ryazanova, G. I., Tkacheva, Ye. Yu., and Albrekht, P. V., eds.) [in Russian], Fiton XXI, Moscow, pp. 436–500.

    Google Scholar 

  42. Elzinga, J. A., Jokela, J., and Shama, L. (2013) Large variation in mitochondrial DNA of sexual and parthenogenetic Dahlica triquetrella (Lepidoptera: Psychidae) shows multiple origins of parthenogenesis, BMC Evol. Biol., 13, 90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Wodinsry, J. (1977) Hormonal inhibition of feeding and death in Octopus: control by optic glands secretion, Science, 198, 948–951.

    Article  Google Scholar 

  44. Anderson, R. C., Wood, J. B., and Byrne, R. A. (2002) Octopus senescence: the beginning of the end, J. Appl. Anim. Welf. Sci., 5, 275–283.

    Article  PubMed  CAS  Google Scholar 

  45. Evans, T. A. (1998) Offspring recognition by mother crab spiders with extreme maternal care, Proc. R. Soc. Lond. (Biol.), 265, 129–134.

    Article  PubMed Central  Google Scholar 

  46. Musolin, D. L., and Saulich, A. H. (2000) Summer dormancy ensures univoltinism in the predatory bug Picromerus bidens, Entomol. Eper. Appl., 95, 259–267.

    Article  Google Scholar 

  47. Volkov, O. G. (2011) Some problems of preservation of insect cultures on an example of Picromerus bidens L. (Hemiptera: Pentatomidae: Asopinae), in Invertebrate Animals in the Collections of Zoos and Insectaries (Spitsyn, V. V., ed.) [in Russian], Verzhe-RA, Moscow, pp. 79–80.

    Google Scholar 

  48. Andrade, M. C. B., Lei Gu, and Stoltz, J. A. (2005) Novel male trait prolongs survival in suicidal mating, Biol. Lett., 1, 276–279.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kartsev, V. M. (1989) Sexual cannibalism in praying mantises, Priroda, 10, 119–120.

    Google Scholar 

  50. Wilson, E. O. (1971) The Insect Societies, The Belknap Press of Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  51. Mitteldorf, J. J. (2012) Adaptive aging in the context of evolutionary theory, Biochemistry (Moscow), 77, 716–725.

    Article  CAS  Google Scholar 

  52. Kipyatkov, V. Ye. (1991) World of Social Insects [in Russian], LGU, Leningrad.

    Google Scholar 

  53. Bordereau, C., Robert, A., Van Tuyen, V., and Peppuy, A. (1997) Suicidal defensive behavior by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera), Insectes Sociaux (Birkhauser, Basel), 44, 289–297.

    Article  Google Scholar 

  54. Oster, G. F., and Wilson, E. O. (1978) Caste and Ecology in the Social Insects, Princeton University Press, Princeton.

    Google Scholar 

  55. Sobotnik, J., Bourguignon, T., Hanus, R., Demianova, Z., Pytelkova, J., Mares, M., Foltynova, P., Preisler, J., Cvacka, J., Krasulova, J., and Roisin, Y. (2012) Explosive backpacks in old termite workers, Science, 337, 436.

    Article  PubMed  CAS  Google Scholar 

  56. Maschwitz, U., and Maschwitz, E. (1974) Platzende Arbeiterinnen: Eine Neue Art der Feindabwehr bei Sozialen Hautfluglern, Oecologia (Berlin), 14, 289–294.

    Article  Google Scholar 

  57. Kartsev, V. M. (2013) General characteristic of the superclass insects — Insecta, in Insects of the European Part of Russia: Atlas with an Overview of Biology (Kartsev, V. M., Farafonova, G. V., Akhatov, A. K., Belyaeva, N. V., Benediktov, A. A., Berezin, M. V., Volkov, O. G., Gura, N. A., Lopatina, Yu. V., Lyutikova, L. I., Prosvirov, A. S., Ryazanova, G. I., Tkacheva, Ye. Yu., and Albrekht, P. V., eds.) [in Russian], Fiton XXI, Moscow, pp. 16–46.

    Google Scholar 

  58. Kartsev, V. M., Lyutikova, L. I., and Berezin, M. V. (2013) Order Hymenoptera, in Insects of the European Part of Russia: Atlas with an Overview of Biology (Kartsev, V. M., Farafonova, G. V., Akhatov, A. K., Belyaeva, N. V., Benediktov, A. A., Berezin, M. V., Volkov, O. G., Gura, N. A., Lopatina, Yu. V., Lyutikova, L. I., Prosvirov, A. S., Ryazanova, G. I., Tkacheva, Ye. Yu., and Albrekht, P. V., eds.) [in Russian], Fiton XXI, Moscow, pp. 298–412.

    Google Scholar 

  59. Radchenko, V. G., and Pesenko, Yu. A. (1994) Biology of Bees (Medvedeva, G. S., ed.) [in Russian], ZIN, St. Petersburg.

  60. Spradberry, J. P. (1991) Evolution of queen number and queen control, in The Social Biology of Wasps (Ross, K. G., and Matthevs, R. W., eds.) Comstock Publishing Associates, a division of Cornell University Press, Ithaca-London, pp. 336–388.

    Google Scholar 

  61. Spradberry, J. P. (1973) Wasps, an Account of the Biology and Natural History of Social and Solitary Wasps, University of Washington Press, Seattle-Washington.

    Google Scholar 

  62. Matsuura, M. (1991) Vespa and Provespa, in The Social Biology of Wasps (Ross, K. G., and Matthevs, R. W., eds.) Comstock Publishing Associates, a division of Cornell University Press, Ithaca-London, pp. 232–262.

    Google Scholar 

  63. Kuznetsov, V. N. (2005) Chinese Wax Bee Apis cerana cerana F. (Hymenoptera, Apidae) in the Far East of Russia [in Russian], KMK, Moscow.

    Google Scholar 

  64. Zakharov, A. A. (1978) Ant, Family, Colony [in Russian], Nauka, Moscow.

    Google Scholar 

  65. Zakharov, A. A. (1993) Stages of eusociality development in insects and criteria for their selection, Zh. Obshch. Biol., 54, 609–618.

    Google Scholar 

  66. Kim, E. B., Fang, X., Fushan, A. A., Huang, Z., Lobanov, A. V., Han, L., Marino, S. M., Sun, X., Turanov, A. A., Yang, P., Yim, S. H., Zhao, X., Kasaikina, M. V., Stoletzki, N., Peng, C., Polak, P., Xiong, Z., Kiezun, A., Zhu, Y., Chen, Y., Kryukov, G. V., Zhang, Q., Peshkin, L., Yang, L., and Bronson, R. T. (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat, Nature, 479, 223–227.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Khalyavkin, A. V. (2013) Phenoptosis as genetically determined aging influenced by signals from the environment, Biochemistry (Moscow), 78, 1001–1005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kartsev.

Additional information

Original Russian Text © V. M. Kartsev, 2014, published in Biokhimiya, 2014, Vol. 79, No. 10, pp. 1269–1289.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartsev, V.M. Phenoptosis in arthropods and immortality of social insects. Biochemistry Moscow 79, 1032–1048 (2014). https://doi.org/10.1134/S0006297914100058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914100058

Key words

Navigation