Skip to main content
Log in

Induction of Ca2+-dependent cyclosporin a-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In liver mitochondria loaded with Ca2+ or Sr2+, α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron transport along the respiratory chain and consequently to disruption of the energy functions of the organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CsA:

cyclosporin A

HDA:

α,ω-hexadecanedioic acid

TPP+ :

tetraphenylphosphonium

Δψ:

transmembrane electrical potential

References

  1. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2010) Membrane Bioenergetics [in Russian], MSU, Moscow.

    Google Scholar 

  2. Malhi, H., Guicciardi, M. E., and Gores, G. J. (2010) Physiol. Rev., 90, 1165–1194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kroemer, G., Galluzzi, L., and Brenner, C. (2007) Physiol. Rev., 87, 99–163.

    Article  CAS  PubMed  Google Scholar 

  4. Zorov, D. B., Plotnikov, E. Y., Jankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pulkova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) Biochemistry (Moscow), 77, 742–753.

    Article  CAS  Google Scholar 

  5. Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 689–706.

    Article  CAS  Google Scholar 

  6. Azzolin, L., von Stockum, S., Basso, E., Petronilli, V., Forte, M. A., and Bernardi, P. (2010) FEBS Lett., 584, 2504–2509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Rasola, A., and Bernardi, P. (2011) Cell Calcium, 50, 222–233.

    Article  CAS  PubMed  Google Scholar 

  8. Crouser, E. D., Gadd, M. E., Julian, M. W., Huff, J. E., Broekemeier, K. M., Robbins, K. A., and Pfeiffer, D. R. (2003) Anal. Biochem., 317, 67–75.

    Article  CAS  PubMed  Google Scholar 

  9. Gilkerson, R. W., Selker, J. M., and Capaldi, R. A. (2003) FEBS Lett., 546, 355–358.

    Article  CAS  PubMed  Google Scholar 

  10. Petrosillo, G., Ruggiero, F. M., Pistolese, M., and Paradies, G. (2004) J. Biol. Chem., 279, 53103–53108.

    Article  CAS  PubMed  Google Scholar 

  11. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2002) Proc. Natl. Acad. Sci. USA, 99, 1259–1263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2006) Biochim. Biophys. Acta, 1757, 639–647.

    Article  CAS  PubMed  Google Scholar 

  13. Krasnikov, B. F., Melik-Nubarov, N. S., Zorova, L. D., Kuzminova, A. E., Isaev, N. K., Cooper, A. J., and Zorov, D. B. (2011) Am. J. Physiol. Cell Physiol., 300, 1193–1203.

    Article  Google Scholar 

  14. Schonfeld, P., and Bohnensack, R. (1997) FEBS Lett., 420, 167–170.

    Article  CAS  PubMed  Google Scholar 

  15. Bodrova, M. E., Dedukhova, V. I., Samartsev, V. N., and Mokhova, E. N. (2000) IUBMB Life, 50, 189–194.

    Article  CAS  PubMed  Google Scholar 

  16. Sultan, A., and Sokolove, P. (2001) Arch. Biochem. Biophys., 386, 37–51.

    Article  CAS  PubMed  Google Scholar 

  17. Sultan, A., and Sokolove, P. (2001) Arch. Biochem. Biophys., 386, 52–61.

    Article  CAS  PubMed  Google Scholar 

  18. Mironova, G. D., Gritsenko, E., Gateau-Roesch, O., Levrat, C., Agafonov, A., Belosludtsev, K., Prigent, A., Muntean, D., Dubois, M., and Ovize, M. (2004) J. Bioenerg. Biomembr., 36, 171–178.

    Article  CAS  PubMed  Google Scholar 

  19. Belosludtsev, K. N., Belosludtseva, N. V., and Mironova, G. D. (2005) Biochemistry (Moscow), 70, 815–821.

    Article  CAS  Google Scholar 

  20. Sanders, R. J., Ofman, R., Valianpou, F., Kemp, S., and Wanders, R. J. (2005) J. Lipid Res., 46, 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  21. Reddy, J. K., and Rao, M. S. (2006) Am. J. Physiol. Gastrointest. Liver Physiol., 290, G852–G858.

    Article  CAS  PubMed  Google Scholar 

  22. Wanders, R. J., Komen, J., and Kemp, S. (2011) FEBS J., 278, 182–194.

    Article  CAS  PubMed  Google Scholar 

  23. Tonsgard, J. H. (1986) J. Pediatr., 109, 440–445.

    Article  CAS  PubMed  Google Scholar 

  24. Kundu, R. K., Tonsgard, J. H., and Getz, G. S. (1991) J. Clin. Invest., 88, 1865–1872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Orellana, M., Rodrigo, R., and Valdes, E. (1998) Gen. Pharmacol., 31, 817–820.

    Article  CAS  PubMed  Google Scholar 

  26. Dubinin, M. V., Adakeeva, S. I., and Samartsev, V. N. (2013) Biochemistry (Moscow), 78, 412–417.

    Article  CAS  Google Scholar 

  27. Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (1997) Biochim. Biophys. Acta, 1339, 251–257.

    Article  Google Scholar 

  28. Kamo, N., Muratsugu, M., Hondoh, R., and Kobatake, Y. (1979) J. Membr. Biol., 49, 105–121.

    Article  CAS  PubMed  Google Scholar 

  29. Appaix, F., Minatchy, M., Riva-Lavieille, C., Olivares, J., Antonsson, B., and Saks, V. A. (2000) Biochim. Biophys. Acta, 1457, 175–181.

    Article  CAS  PubMed  Google Scholar 

  30. Wojtczak, L., and Schonfeld, P. (1993) Biochim. Biophys. Acta, 1183, 41–57.

    Article  CAS  PubMed  Google Scholar 

  31. Ichas, F., and Mazat, J.-P. (1998) Biochim. Biophys. Acta, 1366, 33–50.

    Article  CAS  PubMed  Google Scholar 

  32. Rybakova, S. R., Dubinin, M. V., and Samartsev, V. N. (2013) Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 7, 58–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Samartsev.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 6, pp. 724–731.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.V., Vedernikov, A.A., Khoroshavina, E.I. et al. Induction of Ca2+-dependent cyclosporin a-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength. Biochemistry Moscow 79, 571–576 (2014). https://doi.org/10.1134/S000629791406011X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791406011X

Key words

Navigation