Skip to main content
Log in

Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The structural dynamics of three different ligand-activated G-protein coupled receptors (GPCRs) and the photoreactive receptor rhodopsin from mammals were comparatively studied. As a result, diagrams demonstrating the main structural differences between the studied membrane receptors were obtained. These diagrams represent the projection of the crystal structures of rhodopsin photointermediates and ligand-activated receptors onto the plane defined by the principal components. Thus, we were able to associate the activation process of the receptors with large-scale movements of their individual transmembrane (TM) domains. In addition, the dynamics of extracellular loops of ligand-activated receptors responsible for recognition and initial binding of ligands was studied. Based on these results, two parameters of functionally significant structural dynamics of membrane receptors can be thoroughly analyzed simultaneously — movements of individual TM helices and of extracellular loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

β-1AR:

β-1-adrenergic receptor

β-2AR:

β-2-adrenergic receptor

GPCR:

G-protein coupled receptors

PCA:

principal component analysis

PC1:

the first principal component

PDB:

Protein Data Bank

RMSD:

root-meansquare deviation

7TM receptors:

seven transmembrane domain receptors

TMD:

transmembrane domain

References

  1. Bosier, B., and Hermans, E. (2007) Trends Pharmacol. Sci., 28, 438–446.

    Article  PubMed  CAS  Google Scholar 

  2. Vassilatis, D. K., Hohmann, J. G., Zeng, H., Li, F., Ranchalis, J. E., Mortrud, M. T., Brown, A., Rodriguez, S. S., Weller, J. R., Wright, A. C., Bergmann, J. E., and Gaitanaris, G. A. (2003) Proc. Natl. Acad. Sci. USA, 100, 4903–4908.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang, R., and Xie, X. (2012) Acta Pharmacol. Sin., 33, 372–384.

    Article  PubMed  CAS  Google Scholar 

  4. Congreve, M., and Marshall, F. (2010) Br. J. Pharmacol., 159, 986–996.

    Article  PubMed  CAS  Google Scholar 

  5. Kenakin, T. (2011) J. Pharmacol. Exp. Ther., 336, 296–302.

    Article  PubMed  CAS  Google Scholar 

  6. Kobilka, B. K., and Deupi, X. (2007) Trends Pharmacol. Sci., 28, 397–406.

    Article  PubMed  CAS  Google Scholar 

  7. Deupi, X., and Standfuss, J. (2011) Curr. Opin. Struct. Biol., 21, 541–551.

    Article  PubMed  CAS  Google Scholar 

  8. Okada, T., Ernst, O. P., Palczewski, K., and Hofmann, K. P. (2001) Trends Biochem. Sci., 26, 318–324.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou, X. E., Melcher, K., and Xu, H. E. (2012) Acta Pharmacol. Sin., 33, 291–299.

    Article  PubMed  CAS  Google Scholar 

  10. Kim, T. Y., Schlieter, T., Haase, S., and Alexiev, U. (2012) Eur. J. Cell Biol., 91, 300–310.

    Article  PubMed  CAS  Google Scholar 

  11. Peeters, M. C., van Westen, G. J., Li, Q., and Ap, I. J. (2011) Trends Pharmacol. Sci., 32, 35–42.

    Article  PubMed  CAS  Google Scholar 

  12. Bokoch, M. P., Zou, Y., Rasmussen, S. G., Liu, C. W., Nygaard, R., Rosenbaum, D. M., Fung, J. J., Choi, H. J., Thian, F. S., Kobilka, T. S., Puglisi, J. D., Weis, W. I., Pardo, L., Prosser, R. S., Mueller, L., and Kobilka, B. K. (2010) Nature, 463, 108–112.

    Article  PubMed  CAS  Google Scholar 

  13. Kenakin, T., and Miller, L. J. (2010) Pharmacol. Rev., 62, 265–304.

    Article  PubMed  CAS  Google Scholar 

  14. Rajagopal, S., Rajagopal, K., and Lefkowitz, R. J. (2010) Nat. Rev. Drug. Discov., 9, 373–386.

    Article  PubMed  CAS  Google Scholar 

  15. Hayward, S., Kitao, A., and Berendsen, H. J. C. (1998) Proteins: Structure, Function, and Bioinformatics, 27, 425–437.

    Article  Google Scholar 

  16. Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G., Tate, C. G., and Schertler, G. F. (2008) Nature, 454, 486–491.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia, A. E. (1992) Phys. Rev. Lett., 68, 2696–2699.

    Article  PubMed  CAS  Google Scholar 

  18. Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J., and Lesk, A. M. (2006) Proteins, 64, 559–574.

    Article  PubMed  CAS  Google Scholar 

  19. Ma, S., and Dai, Y. (2011) Brief Bioinform., 12, 714–722.

    Article  PubMed  CAS  Google Scholar 

  20. Bakan, A., and Bahar, I. (2009) Proc. Natl. Acad. Sci. USA, 106, 14349–14354.

    Article  PubMed  CAS  Google Scholar 

  21. Novikov, G. V., Sivozhelezov, S. S., Shebanova, A. S., and Shaitan, K. V. (2012) Biochemistry (Moscow), 77, 435–443.

    Article  CAS  Google Scholar 

  22. Bakan, A., Meireles, L. M., and Bahar, I. (2011) Bioinformatics, 27, 1575–1577.

    Article  PubMed  CAS  Google Scholar 

  23. Kenakin, T. (2011) J. Pharmacol. Exp. Ther., 336, 296–302.

    Article  PubMed  CAS  Google Scholar 

  24. Niesen, M. J., Bhattacharya, S., and Vaidehi, N. (2011) J. Am. Chem. Soc., 133, 13197–13204.

    Article  PubMed  CAS  Google Scholar 

  25. Lebon, G., Warne, T., Edwards, P. C., Bennett, K., Langmead, C. J., Leslie, A. G., and Tate, C. G. (2011) Nature, 474, 521–525.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenbaum, D. M., Zhang, C., Lyons, J. A., Holl, R., Aragao, D., Arlow, D. H., Rasmussen, S. G., Choi, H. J., Devree, B. T., Sunahara, R. K., Chae, P. S., Gellman, S. H., Dror, R. O., Shaw, D. E., Weis, W. I., Caffrey, M., Gmeiner, P., and Kobilka, B. K. (2011) Nature, 469, 236–240.

    Article  PubMed  CAS  Google Scholar 

  27. Rasmussen, S. G., DeVree, B. T., Zou, Y., Krus, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., and Kobilka, B. K. (2011) Nature, 477, 549–555.

    Article  PubMed  CAS  Google Scholar 

  28. Moukhametzianov, R., Warne, T., Edwards, P. C., Serrano-Vega, M. J., Leslie, A. G., Tate, C. G., and Schertler, G. F. (2011) Proc. Natl. Acad. Sci. USA, 108, 8228–8232.

    Article  PubMed  CAS  Google Scholar 

  29. Milligan, G. (2003) Mol. Pharmacol., 64, 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  30. Salom, D., Lodowski, D. T., Stenkamp, R. E., Le Trong, I., Golczak, M., Jastrzebska, B., Harris, T., Ballesteros, J. A., and Palczewski, K. (2006) Proc. Natl. Acad. Sci. USA, 103, 16123–16128.

    Article  PubMed  CAS  Google Scholar 

  31. Warne, T., Moukhametzianov, R., Baker, J. G., Nehme, R., Edwards, P. C., Leslie, A. G., Schertler, G. F., and Tate, C. G. (2011) Nature, 469, 241–244.

    Article  PubMed  CAS  Google Scholar 

  32. Brunskole, I., Strasser, A., Seifert, R., and Buschauer, A. (2011) Naunyn Schmiedebergs Arch. Pharmacol., 384, 301–317.

    Article  PubMed  CAS  Google Scholar 

  33. Vanni, S., Neri, M., Tavernelli, I., and Rothlisberger, U. (2009) Biochemistry, 48, 4789–4797.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Novikov.

Additional information

Original Russian Text © G. V. Novikov, V. S. Sivozhelezov, K. V. Shaitan, 2013, published in Biokhimiya, 2013, Vol. 78, No. 4, pp. 522–532.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, G.V., Sivozhelezov, V.S. & Shaitan, K.V. Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis. Biochemistry Moscow 78, 403–411 (2013). https://doi.org/10.1134/S0006297913040093

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913040093

Key words

Navigation