Skip to main content
Log in

Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll BA at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P+H A state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P+B A HA and P+BAH A states. The data give grounds for assuming that the value of the energy difference between the states P*, P+B A HA, and P+BAH A at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll BA is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P+B A state with respect to P*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔA :

absorption change (light-minus-dark)

BA and BB :

monomeric BChl in A- and B-chain, respectively

BChl:

bacteriochlorophyll

BPheo:

bacteriopheophytin

HA and HB :

BPheo in A- and B-chain, respectively

P:

primary electron donor, BChl dimer

PA and PB :

BChl molecules within P

QA and QB :

primary and secondary quinone, respectively

Rba., Rhodobacter :

RC, reaction center

References

  1. Wohri, A. B., Wahlgren, W. Y., Malmerberg, E., Johansson, L. C., Neutze, R., and Katona, G. (2009) Biochemistry, 48, 9831–9838.

    Article  PubMed  Google Scholar 

  2. Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science, 276, 812–816.

    Article  PubMed  CAS  Google Scholar 

  3. Khatypov, R. A., Khmelnitskiy, A. Yu., Khristin, A. M., and Shuvalov, V. A. (2010) Doklady Biochem. Biophys., 430, 24–28.

    Article  CAS  Google Scholar 

  4. Khatypov, R. A., Khmelnitskiy, A. Yu., Khristin, A. M., Fufina, T. Yu., Vasilieva, L. G., and Shuvalov, V. A. (2012) Biochim. Biophys. Acta, 1817, 1392–1398.

    Article  PubMed  CAS  Google Scholar 

  5. Shuvalov, V. A. (1990) Primary Conversion of Light Energy in Photosynthesis [in Russian], Nauka, Moscow.

    Google Scholar 

  6. Kirmaier, C., and Holten, D. (1993) in The Photosynthetic Reaction Center (Deisenhofer, J., and Norris, J., eds.) Academic Press, San Diego, pp. 49–70.

    Google Scholar 

  7. Woodbury, N. W., and Allen, J. P. (1995) in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds.) Kluwer Academic Publishers, Dordrecht, pp. 527–557.

    Google Scholar 

  8. Shuvalov, V. A. (2000) Conversion of Light Energy in Primary Act of Charge Separation in Reaction Centers of Photosynthesis [in Russian], Nauka, Moscow.

    Google Scholar 

  9. Shuvalov, V. A., and Yakovlev, A. G. (2003) FEBS Lett., 540, 26–34.

    Article  PubMed  CAS  Google Scholar 

  10. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1984) J. Mol. Biol., 180, 385–398.

    Article  PubMed  CAS  Google Scholar 

  11. Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure, 2, 925–936.

    Article  PubMed  CAS  Google Scholar 

  12. Hu, Y., and Mukamel, S. (1990) in Perspectives in Photosynthesis (Jortner, J., and Pullman, B., eds.) Kluwer Academic Publishers, Amsterdam, pp. 171–184.

    Chapter  Google Scholar 

  13. Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H. U., and Zinth, W. (1989) Chem. Phys. Lett., 160, 1–7.

    Article  CAS  Google Scholar 

  14. Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H., and Zinth, W. (1993) Proc. Natl. Acad. Sci. USA, 90, 11757–11761.

    Article  PubMed  CAS  Google Scholar 

  15. Kennis, J. T., Shkuropatov, A. Y., van Stokkum, I. H. M., Gast, P., Hoff, A. J., Shuvalov, V. A., and Aartsma, T. J. (1997) Biochemistry, 36, 16231–16238.

    Article  PubMed  CAS  Google Scholar 

  16. Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2000) FEBS Lett., 466, 209–212.

    Article  PubMed  CAS  Google Scholar 

  17. Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., and Dutton, P. L. (1992) Nature, 355, 796–802.

    Article  PubMed  CAS  Google Scholar 

  18. Williams, J. C., Alden, R. G., Murchison, H. A., Peloquin, J. M., Woodbury, N. W., and Allen, J. P. (1992) Biochemistry, 31, 11029–11037.

    Article  PubMed  CAS  Google Scholar 

  19. Spiedel, D., Jones, M. R., and Robert, B. (2002) FEBS Lett., 527, 171–175.

    Article  PubMed  CAS  Google Scholar 

  20. Allen, J. P., and Williams, J. C. (1995) J. Bioenerg. Biomembr., 27, 275–283.

    Article  PubMed  CAS  Google Scholar 

  21. Jones, M. R., Visschers, R. W., van Grondelle, R., and Hunter, C. N. (1992) Biochemistry, 31, 4458–4465.

    Article  PubMed  CAS  Google Scholar 

  22. Vasil’eva, L. G., Bolgarina, T. I., Khatypov, R. A., Shkuropatov, A. Ya., Miyake, J., and Shuvalov, V. A. (2001) Doklady Biochem. Biophys., 376, 46–49.

    Article  Google Scholar 

  23. Khatypov, R. A., Vasilieva, L. G., Fufina, T. Y., Bolgarina, T. I., and Shuvalov, V. A. (2005) Biochemistry (Moscow), 70, 1256–1261.

    PubMed  CAS  Google Scholar 

  24. Cohen-Bazire, G., Sistrom, W. R., and Stanier, R. Y. (1957) J. Cell. Comp. Physiol., 49, 25–68.

    Article  CAS  Google Scholar 

  25. Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Biochim. Biophys. Acta, 849, 337–346.

    Article  CAS  Google Scholar 

  26. Woodbury, N. W., Becker, M., Middendorf, D., and Parson, W. W. (1985) Biochemistry, 24, 7516–7521.

    Article  PubMed  CAS  Google Scholar 

  27. Fajer, J., Brune, D. C., Davis, M. S., Forman, A., and Spaulding, L. D. (1975) Proc. Natl. Acad. Sci. USA, 72, 4956–4960.

    Article  PubMed  CAS  Google Scholar 

  28. Du, M., Rosenthal, S. J., Xie, X., DiMagno, T. J., Schmidt, M., Hanson, D. K., Schiffer, M., Norris, J. R., and Fleming, G. R. (1992) Proc. Natl. Acad. Sci. USA, 89, 8517–8521.

    Article  PubMed  CAS  Google Scholar 

  29. Hamm, P., Gray, K. A., Oesterhelt, D., Feick, R., Scheer, H., and Zinth, W. (1993) Biochim. Biophys. Acta, 1142, 99–105.

    Article  CAS  Google Scholar 

  30. Jia, Y., DiMagno, T. J., Chan, C.-K., Wang, Z., Du, M., Hanson, D. K., Schiffer, M., Norris, J. R., Fleming, G. R., and Popov, M. S. (1993) J. Phys. Chem., 97, 13180–13191.

    Article  CAS  Google Scholar 

  31. Holzwarth, A. R., and Muller, M. G. (1996) Biochemistry, 35, 11820–11831.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, H., Lin, S., and Woodbury, N. W. (2008) J. Phys. Chem. B, 112, 14296–14301.

    Article  PubMed  CAS  Google Scholar 

  33. Yakovlev, A. G., Vasilieva, L. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2011) Biochemistry (Moscow), 76, 1107–1119.

    PubMed  CAS  Google Scholar 

  34. Ridge, J. P., Fyfe, P. K., McAuley, K. E., van Brederode, M. E., Robert, B., van Grondelle, R., Isaacs, N. W., Cogdell, R. J., and Jones, M. R. (2000) Biochem. J., 351, 567–578.

    Article  PubMed  CAS  Google Scholar 

  35. De Rege, P., Williams, S., and Therien, M. (1995) Science, 269, 1409–1413.

    Article  PubMed  Google Scholar 

  36. Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2002) Biochemistry, 41, 14019–14027.

    Article  PubMed  CAS  Google Scholar 

  37. Bixon, M., Jortner, J., and Michel-Beyerle, M. E. (1995) Chem. Phys., 197, 389–404.

    Article  CAS  Google Scholar 

  38. Shuvalov, V. A., and Yakovlev, A. G. (1998) Membr. Cell Biol., 15, 563–569.

    Google Scholar 

  39. Van Stokkum, I. H. M., Beekman, L. M. P., Jones, M. R., van Brederode, M. E., and van Grondelle, R. (1997) Biochemistry, 36, 11360–11368.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Khmelnitskiy.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 1, pp. 82–91.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM12-226, December 9, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khmelnitskiy, A.Y., Khatypov, R.A., Khristin, A.M. et al. Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor. Biochemistry Moscow 78, 60–67 (2013). https://doi.org/10.1134/S0006297913010070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913010070

Key words

Navigation