Skip to main content
Log in

Initiation of 8-oxoguanine base excision repair within trinucleotide tandem repeats

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Trinucleotide repeat expansion provides a molecular basis for several devastating neurodegenerative diseases. In particular, expansion of a CAG run in the human HTT gene causes Huntington’s disease. One of the main reasons for triplet repeat expansion in somatic cells is base excision repair (BER), involving damaged base excision and repair DNA synthesis that may be accompanied by expansion of the repaired strand due to formation of noncanonical DNA structures. We have analyzed the kinetics of excision of a ubiquitously found oxidized purine base, 8-oxoguanine (oxoG), by DNA glycosylase OGG1 from the substrates containing a CAG run flanked by AT-rich sequences. The values of k 2 rate constant for the removal of oxoG from triplets in the middle of the run were higher than for oxoG at the flanks of the run. The value of k 3 rate constant dropped starting from the third CAG-triplet in the run and remained stable until the 3′-terminal triplet, where it decreased even more. In nuclear extracts, the profile of oxoG removal rate along the run resembled the profile of k 2 constant, suggesting that the reaction rate in the extracts is limited by base excision. The fully reconstituted BER was efficient with all substrates unless oxoG was near the 3′-flank of the run, interfering with the initiation of the repair. DNA polymerase β was able to perform a strand-displacement DNA synthesis, which may be important for CAG run expansion initiated by BER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

apurine/apyrimidine

BER:

base excision repair

DTT:

dithiothreitol

NE:

nuclear extract

ODN:

oligodeoxyribonucleotide

oxoG:

8-oxoguanine

References

  1. Perutz, M. F., and Windle, A. H. (2001) Nature, 412, 143–144.

    Article  PubMed  CAS  Google Scholar 

  2. Orr, H. T., and Zoghbi, H. Y. (2007) Annu. Rev. Neurosci., 30, 575–621.

    Article  PubMed  CAS  Google Scholar 

  3. Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M., Folstein, S., Ross, C., Franz, M., Abbott, M., Gray, J., Conneally, P., Young, A., Penney, J., Hollingsworth, Z., Shoulson, I., Lazzarini, A., Falek, A., Koroshetz, W., Sax, D., Bird, E., Vonsattel, J., Bonilla, E., Alvir, J., Bickham Conde, J., Cha, J.-H., Dure, L., Gomez, F., Ramos, M., Sanchez-Ramos, J., Snodgrass, S., de Young, M., Wexler, N., Moscowitz, C., Penchaszadeh, G., MacFarlane, H., Anderson, M., Jenkins, B., Srinidhi, J., Gusella, G. B. J., and MacDonald, M. (1993) Nat. Genet., 4, 387–392.

    Article  PubMed  CAS  Google Scholar 

  4. Walker, F. O. (2007) Lancet, 369, 218–228.

    Article  PubMed  CAS  Google Scholar 

  5. Kennedy, L., Evans, E., Chen, C.-M., Craven, L., Detloff, P. J., Ennis, M., and Shelbourne, P. F. (2003) Hum. Mol. Genet., 12, 3359–3367.

    Article  PubMed  CAS  Google Scholar 

  6. Kovtun, I. V., Liu, Y., Bjoras, M., Klungland, A., Wilson, S. H., and McMurray, C. T. (2007) Nature, 447, 447–452.

    Article  PubMed  CAS  Google Scholar 

  7. Zharkov, D. O. (2008) Cell. Mol. Life Sci., 65, 1544–1565.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, Y., Prasad, R., Beard, W. A., Hou, E. W., Horton, J. K., McMurray, C. T., and Wilson, S. H. (2009) J. Biol. Chem., 284, 28352–28366.

    Article  PubMed  CAS  Google Scholar 

  9. Goula, A.-V., Berquist, B. R., Wilson, D. M., III, Wheeler, V. C., Trottier, Y., and Merienne, K. (2009) PLoS Genet., 5, e1000749.

    Article  PubMed  Google Scholar 

  10. Sokhansanj, B. A., Rodrigue, G. R., Fitch, J. P., and Wilson, D. M., III (2002) Nucleic Acids Res., 30, 1817–1825.

    Article  PubMed  CAS  Google Scholar 

  11. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  12. Gilboa, R., Zharkov, D. O., Golan, G., Fernandes, A. S., Gerchman, S. E., Matz, E., Kycia, J. H., Grollman, A. P., and Shoham, G. (2002) J. Biol. Chem., 277, 19811–19816.

    Article  PubMed  CAS  Google Scholar 

  13. Kuznetsov, N. A., Koval, V. V., Zharkov, D. O., Nevinsky, G. A., Douglas, K. T., and Fedorova, O. S. (2005) Nucleic Acids Res., 33, 3919–3931.

    Article  PubMed  CAS  Google Scholar 

  14. Sidorenko, V. S., Nevinsky, G. A., and Zharkov, D. O. (2007) DNA Repair, 6, 317–328.

    Article  PubMed  CAS  Google Scholar 

  15. Beard, W. A., and Wilson, S. H. (1995) Meth. Enzymol., 262, 98–107.

    Article  PubMed  CAS  Google Scholar 

  16. Dignam, J. D. (1990) Meth. Enzymol., 182, 194–203.

    Article  PubMed  CAS  Google Scholar 

  17. Stierum, R. H., Dianov, G. L., and Bohr, V. A. (1999) Nucleic Acids Res., 27, 3712–3719.

    Article  PubMed  CAS  Google Scholar 

  18. Sinitsyna, O., Krysanova, Z., Ishchenko, A., Dikalova, A. E., Stolyarov, S., Kolosova, N., Vasunina, E., and Nevinsky, G. (2006) J. Cell. Mol. Med., 10, 206–215.

    Article  PubMed  CAS  Google Scholar 

  19. Visnes, T., Akbari, M., Hagen, L., Slupphaug, G., and Krokan, H. E. (2008) DNA Repair, 7, 1869–1881.

    Article  PubMed  CAS  Google Scholar 

  20. Akbari, M., and Krokan, H. E. (2012) Mutat. Res., in press.

  21. Bruner, S. D., Norman, D. P. G., and Verdine, G. L. (2000) Nature, 403, 859–866.

    Article  PubMed  CAS  Google Scholar 

  22. Kirpota, O. O., Zharkov, D. O., Buneva, V. N., and Nevinsky, G. A. (2006) Mol. Biol., 40, 952–960.

    Article  CAS  Google Scholar 

  23. Garber, K. B., Visootsak, J., and Warren, S. T. (2008) Eur. J. Hum. Genet., 16, 666–672.

    Article  PubMed  CAS  Google Scholar 

  24. Hang, B., and Singer, B. (2003) Chem. Res. Toxicol., 16, 1181–1195.

    Article  PubMed  CAS  Google Scholar 

  25. Subramanian, S., Mishra, R. K., and Singh, L. (2003) Genome Biol., 4:R13.

  26. Li, Y.-C., Korol, A. B., Fahima, T., Beiles, A., and Nevo, E. (2002) Mol. Ecol., 11, 2453–2465.

    Article  PubMed  CAS  Google Scholar 

  27. Li, Y.-C., Korol, A. B., Fahima, T., and Nevo, E. (2004) Mol. Biol. Evol., 21, 991–1007.

    Article  PubMed  CAS  Google Scholar 

  28. Jorda, J., and Kajava, A. V. (2010) Adv. Protein Chem. Struct. Biol., 79, 59–88.

    Article  PubMed  CAS  Google Scholar 

  29. Gonitel, R., Moffitt, H., Sathasivam, K., Woodman, B., Detloff, P. J., Faull, R. L. M., and Bates, G. P. (2008) Proc. Natl. Acad. Sci. USA, 105, 3467–3472.

    Article  PubMed  CAS  Google Scholar 

  30. Mollersen, L., Rowe, A. D., Larsen, E., Rognes, T., and Klungland, A. (2010) PLoS Genet., 6, e1001242.

    Article  PubMed  Google Scholar 

  31. Lee, J.-M., Zhang, J., Su, A. I., Walker, J. R., Wiltshire, T., Kang, K., Dragileva, E., Gillis, T., Lopez, E. T., Boily, M.-J., Cyr, M., Kohane, I., Gusella, J. F., MacDonald, M. E., and Wheeler, V. C. (2010) BMC Syst. Biol., 4, 29.

    Article  PubMed  Google Scholar 

  32. Entezam, A., and Usdin, K. (2008) Nucleic Acids Res., 36, 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  33. Entezam, A., Lokanga, A. R., Le, W., Hoffman, G., and Usdin, K. (2010) Hum. Mutat., 31, 611–616.

    PubMed  CAS  Google Scholar 

  34. Sharma, R., Bhatti, S., Gomez, M., Clark, R. M., Murray, C., Ashizawa, T., and Bidichandani, S. I. (2002) Hum. Mol. Genet., 11, 2175–2187.

    Article  PubMed  CAS  Google Scholar 

  35. Clark, R. M., De Biase, I., Malykhina, A. P., Al-Mahdawi, S., Pook, M., and Bidichandani, S. I. (2007) Hum. Genet., 120, 633–640.

    Article  PubMed  CAS  Google Scholar 

  36. Manley, K., Shirley, T. L., Flaherty, L., and Messer, A. (1999) Nat. Genet., 23, 471–473.

    Article  PubMed  CAS  Google Scholar 

  37. Owen, B. A. L., Yang, Z., Lai, M., Gajek, M., Badger, J. D., III, Hayes, J. J., Edelmann, W., Kucherlapati, R., Wilson, T. M., and McMurray, C. T. (2005) Nat. Struct. Mol. Biol., 12, 663–670.

    Article  PubMed  CAS  Google Scholar 

  38. Coppede, F., Migheli, F., Ceravolo, R., Bregant, E., Rocchi, A., Petrozzi, L., Unti, E., Lonigro, R., Siciliano, G., and Migliore, L. (2010) Toxicology, 278, 199–203.

    Article  PubMed  CAS  Google Scholar 

  39. Lin, Y., and Wilson, J. H. (2007) Mol. Cell. Biol., 27, 6209–6217.

    Article  PubMed  CAS  Google Scholar 

  40. Dickerson, R. E., Bansal, M., Calladine, C. R., Diekmann, S., Hunter, W. N., Kennard, O., von Kitzing, E., Lavery, R., Nelson, H. C. M., Olson, W. K., Saenger, W., Shakked, Z., Sklenar, H., Soumpasis, D. M., Tung, C.-S., Wang, A. H.-J., and Zhurkin, V. B. (1989) Nucleic Acids Res., 17, 1797–1803.

    Article  PubMed  CAS  Google Scholar 

  41. Kirpota, O. O., Endutkin, A. V., Ponomarenko, M. P., Ponomarenko, P. M., Zharkov, D. O., and Nevinsky, G. A. (2011) Nucleic Acids Res., 39, 4836–4850.

    Article  PubMed  CAS  Google Scholar 

  42. Vlahovicek, K., Kajan, L., and Pongor, S. (2003) Nucleic Acids Res., 31, 3686–3687.

    Article  PubMed  CAS  Google Scholar 

  43. Gabrielian, A., Vlahovicek, K., and Pongor, S. (1997) FEBS Lett., 406, 69–74.

    Article  PubMed  CAS  Google Scholar 

  44. Gromiha, M. M., Munteanu, M. G., Gabrielian, A., and Pongor, S. (1996) J. Biol. Phys., 22, 227–243.

    Article  CAS  Google Scholar 

  45. Banerjee, A., Yang, W., Karplus, M., and Verdine, G. L. (2005) Nature, 434, 612–618.

    Article  PubMed  CAS  Google Scholar 

  46. Banerjee, A., and Verdine, G. L. (2006) Proc. Natl. Acad. Sci. USA, 103, 15020–15025.

    Article  PubMed  CAS  Google Scholar 

  47. Lee, S., Radom, C. T., and Verdine, G. L. (2008) J. Am. Chem. Soc., 130, 7784–7785.

    Article  PubMed  CAS  Google Scholar 

  48. Fromme, J. C., Bruner, S. D., Yang, W., Karplus, M., and Verdine, G. L. (2003) Nat. Struct. Biol., 10, 204–211.

    Article  PubMed  CAS  Google Scholar 

  49. Norman, D. P. G., Bruner, S. D., and Verdine, G. L. (2001) J. Am. Chem. Soc., 123, 359–360.

    Article  PubMed  CAS  Google Scholar 

  50. Chung, S. J., and Verdine, G. L. (2004) Chem. Biol., 11, 1643–1649.

    Article  PubMed  CAS  Google Scholar 

  51. Bansal, M., Bhattacharyya, D., and Ravi, B. (1995) Comput. Appl. Biosci., 11, 281–287.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Zharkov.

Additional information

Original Russian Text © A. G. Derevyanko, A. V. Endutkin, A. A. Ishchenko, M. K. Saparbaev, D. O. Zharkov, 2012, published in Biokhimiya, 2012, Vol. 77, No. 3, pp. 342–353.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM11-230, January 22, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derevyanko, A.G., Endutkin, A.V., Ishchenko, A.A. et al. Initiation of 8-oxoguanine base excision repair within trinucleotide tandem repeats. Biochemistry Moscow 77, 270–279 (2012). https://doi.org/10.1134/S0006297912030054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912030054

Key words

Navigation