Skip to main content
Log in

Programmed cell death in plants: Protective effect of mitochondrial-targeted quinones

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ubiquinone or plastoquinone covalently linked to synthetic decyltriphenylphosphonium (DTPP+) or rhodamine cations prevent programmed cell death (PCD) in pea leaf epidermis induced by chitosan or CN. PCD was monitored by recording the destruction of cell nuclei. CN induced the destruction of nuclei in both epidermal cells (EC) and guard cells (GC), whereas chitosan destroyed nuclei in EC not in GC. The half-maximum concentrations for the protective effects of the quinone derivatives were within the pico- and nanomolar range. The protective effect of the quinones was removed by a protonophoric uncoupler and reduced by tetraphenylphosphonium cations. CN-Induced PCD was accelerated by the tested quinone derivatives at concentrations above 10−8–10−7 M. Unlike plastoquinone linked to the rhodamine cation (SkQR1), DTPP+ derivatives of quinones suppressed menadione-induced H2O2 generation in the cells. The CN-induced destruction of GC nuclei was prevented by DTPP+ derivatives in the dark not in the light. SkQR1 inhibited this process both in the dark and in the light, and its effect in the light was similar to that of rhodamine 6G. The data on the protective effect of cationic quinone derivatives indicate that mitochondria are involved in PCD in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

te]BQ:

p-benzoquinone

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DAPI:

4′,6-diamidino-2-phenylindole dihydrochloride

DCF:

2′,7′-dichlorofluorescein

DCMU:

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

DTPP+ :

decyltriphenylphosphonium cation

EC:

basic epidermal cells

GC:

stoma guard cells

MitoQ:

10-(6′-ubiquinonyl)decyltriphenylphosphonium

NBT:

nitroblue tetrazolium

PCD:

programmed cell death

ROS:

reactive oxygen species

SkQ1:

10-(6′-plastoquinonyl)decyltriphenylphosphonium

SkQ3:

10-(6′-methylplastoquinonyl)decyltriphenylphosphonium

SkQR1:

10-(plastoquinonyl)decylrhodamine 19

TPP+ :

tetraphenylphosphonium cation

Δyy:

transmembrane electrical potential difference

References

  1. Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.

    CAS  Google Scholar 

  2. Van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., and Vandenabeele, P. (2002) Cell Death Differ., 9, 1031–1042.

    Article  PubMed  Google Scholar 

  3. Newmeyer, D. D., and Ferguson-Viller, S. (2003) Cell, 112, 481–490.

    Article  PubMed  CAS  Google Scholar 

  4. Danial, N. N., and Korsmeyer, S. J. (2004) Cell, 116, 205–219.

    Article  PubMed  CAS  Google Scholar 

  5. Skulachev, V. P. (2006) Apoptosis, 11, 473–485.

    Article  PubMed  CAS  Google Scholar 

  6. Balk, J., Leaver, C. J., and McCabe, P. F. (1999) FEBS Lett., 463, 151–154.

    Article  PubMed  CAS  Google Scholar 

  7. Sun, Y.-L., Zhao, Y., Hong, X., and Zhai, Z.-H. (1999) FEBS Lett., 462, 317–321.

    Article  PubMed  CAS  Google Scholar 

  8. Lam, E., Kato, N., and Lawton, M. (2001) Nature, 411, 848–853.

    Article  PubMed  CAS  Google Scholar 

  9. Curtis, M. J., and Wolpert, T. J. (2002) Plant J., 29, 295–312.

    Article  PubMed  Google Scholar 

  10. Krause, M. J., and Durner, J. (2004) Mol. Plant Microbe Interact., 17, 131–139.

    Article  PubMed  CAS  Google Scholar 

  11. Yao, N., Eisfelder, B. J., Marvin, J., and Greenberg, J. T. (2004) Plant J., 40, 596–610.

    Article  PubMed  CAS  Google Scholar 

  12. Samuilov, V. D., Lagunova, E. M., Beshta, O. E., and Kitashov, A. V. (2000) Biochemistry (Moscow), 65, 696–702.

    CAS  Google Scholar 

  13. Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, D. S., Kiselevsky, D. B., and Makarova, Ya. V. (2002) Biochemistry (Moscow), 67, 627–634.

    Article  CAS  Google Scholar 

  14. Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Ya. V., and Gusev, M. V. (2003) Biosci. Rep., 23, 103–117.

    Article  PubMed  CAS  Google Scholar 

  15. Samuilov, V. D., Lagunova, E. M., Gostimsky, S. A., Timofeev, K. N., and Gusev, M. V. (2003) Biochemistry (Moscow), 68, 912–917.

    Article  CAS  Google Scholar 

  16. Bakeeva, L. E., Dzyubinskaya, E. V., and Samuilov, V. D. (2005) Biochemistry (Moscow), 70, 972–979.

    Article  CAS  Google Scholar 

  17. Dzyubinskaya, E. V., Kiselevsky, D. B., Lobysheva, N. V., Shestak, A. A., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 1120–1127.

    Article  CAS  Google Scholar 

  18. Dzyubinskaya, E. V., Kiselevsky, D. B., Bakeeva, L. E., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 395–405.

    Article  CAS  Google Scholar 

  19. Boller, T. (1995) Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 189–214.

    Article  CAS  Google Scholar 

  20. Dangl, J. L., and Jones, J. D. G. (2001) Nature, 441, 826–833.

    Article  Google Scholar 

  21. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Proc. Natl. Acad. Sci. USA, 103, 11086–11091.

    Article  PubMed  CAS  Google Scholar 

  22. Zuppini, A., Baldan, B., Millioni, R., Favaron, F., Navazio, L., and Mariani, P. (2003) New Phytol., 161, 557–568.

    Article  Google Scholar 

  23. Pospieszny, H., Chirkov, S. N., and Atabekov, I. G. (1991) Plant Sci., 79, 63–68.

    Article  CAS  Google Scholar 

  24. Iriti, M., Sironi, M., Gomarasca, S., Casazza, A. P., Soave, C., and Faoro, F. (2006) Plant Physiol. Biochem., 44, 893–900.

    Article  PubMed  CAS  Google Scholar 

  25. Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y., and Mayama, S. (2001) Mol. Plant-Microbe Interact., 14, 477–486.

    Article  PubMed  CAS  Google Scholar 

  26. Vasil’ev, L. A., Dzyubinskaya, E. V., Zinovkin, R. A., Kiselevsky, D. B., Lobysheva, N. V., and Samuilov, V. D. (2009) Biochemistry (Moscow), 74, 1035–1043.

    Article  Google Scholar 

  27. Liberman, E. A., Topali, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.

    Article  PubMed  CAS  Google Scholar 

  28. Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.

    Article  PubMed  CAS  Google Scholar 

  29. Hirsch, R. E., Lewis, B. D., Spalding, E. P., and Sussman, M. R. (1998) Science, 280, 918–921.

    Article  PubMed  CAS  Google Scholar 

  30. Fisher, D. B. (2000) in Biochemistry and Molecular Biology of Plants (Buchanan, B. B., Gruissem, W., and Joner, R. L., eds.) 1st Edn., American Society of Plant Physiologists, Rockville, MD, pp. 730–784.

    Google Scholar 

  31. Palmgren, M. G. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 817–845.

    Article  PubMed  CAS  Google Scholar 

  32. Sondergaard, T. E., Schulz, A., and Palmgren, M. G. (2004) Plant Physiol., 136, 2475–2482.

    Article  PubMed  CAS  Google Scholar 

  33. Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteus, W. K., Ledgerwood, E. C., Smith, R. A. J., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.

    Article  PubMed  CAS  Google Scholar 

  34. James, A. M., Cocheme, H. M., Smith, R. A. J., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.

    Article  PubMed  CAS  Google Scholar 

  35. Dhanasekaran, A., Kotamraju, S., Kalivendi, S. V., Matsunaga, T., Shang, T., Keszler, A., Joseph, J., and Kalyanaraman, B. (2004) J. Biol. Chem., 279, 37575–37587.

    Article  PubMed  CAS  Google Scholar 

  36. Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.

    Article  CAS  Google Scholar 

  37. Antonenko, Yu. N., et al. (2008) Biochemistry (Moscow), 73, 1273–1287.

    Article  CAS  Google Scholar 

  38. Bakeeva, L. E., et al. (2008) Biochemistry (Moscow), 73, 1288–1299.

    Article  CAS  Google Scholar 

  39. Agapova, L. S., et al. (2008) Biochemistry (Moscow), 73, 1300–1316.

    Article  CAS  Google Scholar 

  40. Neroev, V. V., et al. (2008) Biochemistry (Moscow), 73, 1317–1328.

    Article  CAS  Google Scholar 

  41. Anisimov, V. N., et al. (2008) Biochemistry (Moscow), 73, 1329–1342.

    Article  CAS  Google Scholar 

  42. Hideg, E., Barta, C., Kalai, T., Vass, I., Hideg, K., and Asada, K. (2002) Plant Cell Physiol., 43, 1154–1164.

    Article  PubMed  CAS  Google Scholar 

  43. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Chem. Res. Toxicol., 5, 227–231.

    Article  PubMed  CAS  Google Scholar 

  44. Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., and Nesov, A. V. (2006) Biochemistry (Moscow), 71, 384–394.

    Article  CAS  Google Scholar 

  45. Samuilov, V. D., Kiselevsky, D. B., Shestak, A. A., Nesov, A., and Vasil’ev, L. V. (2008) Biochemistry (Moscow), 73, 1076–1084.

    Article  CAS  Google Scholar 

  46. Melotto, M., Uderwood, W., Koczan, J., Nomura, K., and He, S. Y. (2006) Cell, 126, 969–980.

    Article  PubMed  CAS  Google Scholar 

  47. Hauska, G. (1977) in Encyclopedia of Plant Physiology (Trebst, A., and Avron, M., eds.) Vol. 5, Springer-Verlag, Berlin, pp. 253–265.

    Google Scholar 

  48. Samuilov, V. D., Barsky, E. L., and Kitashov, A. V. (1997) Biochemistry (Moscow), 62, 909–913.

    CAS  Google Scholar 

  49. Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. (1977) Arch. Biochem. Biophys., 180, 248–257.

    Article  PubMed  CAS  Google Scholar 

  50. Kolesova, G. M., Karnaukhova, L. S., and Yaguzhinsky, L. S. (1991) Biokhimiya, 56, 1779–1786.

    CAS  Google Scholar 

  51. Yamashoji, S., Ikeda, T., and Yamashoji, K. (1991) Biochim. Biophys. Acta, 1059, 99–105.

    Article  PubMed  CAS  Google Scholar 

  52. Zorov, D. B., Filburn, C. R., Klotz, L.-O., Zweier, J. J., and Sollot, S. J. (2000) J. Exp. Med., 192, 1001–1014.

    Article  PubMed  CAS  Google Scholar 

  53. Li, W.-G., Miller, F. J., Zhang, H. J., Spitz, D. R., Oberley, L. W., and Weintraub, N. L. (2001) J. Biol. Chem., 276, 29251–29256.

    Article  PubMed  CAS  Google Scholar 

  54. Sherstnev, M. P., Atanaev, T. B., and Vladimirov, Yu. A. (1989) Biofizika, 34, 684–687.

    PubMed  CAS  Google Scholar 

  55. Shea, C. R., Chen, N., Wimberly, J., and Hasan, T. (1989) Cancer Res., 49, 3961–3965.

    PubMed  CAS  Google Scholar 

  56. Ogata, M., Inanami, O., Nakajima, M., Nakajima, T., Hiraoka, W., and Kuwabara, M. (2003) Photochem. Photobiol., 78, 241–247.

    Article  PubMed  CAS  Google Scholar 

  57. Petrat, F., Pindiur, S., Kirsch, M., and de Groot, H. (2003) J. Biol. Chem., 278, 3298–3307.

    Article  PubMed  CAS  Google Scholar 

  58. Okada, K., Ikeuchi, M., Yamamoto, N., Ono, T., and Miyao, M. (1996) Biochim. Biophys. Acta, 1274, 73–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Samuilov.

Additional information

Original Russian Text © L. A. Vasil’ev, E. V. Dzyubinskaya, D. B. Kiselevsky, A. A. Shestak, V. D. Samuilov, 2011, published in Biokhimiya, 2011, Vol. 76, No. 10, pp. 1374–1386.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM11-124, September 4, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, L.A., Dzyubinskaya, E.V., Kiselevsky, D.B. et al. Programmed cell death in plants: Protective effect of mitochondrial-targeted quinones. Biochemistry Moscow 76, 1120–1130 (2011). https://doi.org/10.1134/S0006297911100051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911100051

Key words

Navigation