Skip to main content
Log in

Three-dimensional structures of noncovalent complexes of Citrobacter freundii methionine γ-lyase with substrates

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Crystal structures of Citrobacter freundii methionine γ-lyase complexes with the substrates of γ-(L-1-amino-3-methylthiopropylphosphinic acid) and β-(S-ethyl-L-cysteine) elimination reactions and the competitive inhibitor L-nor-leucine have been determined at 1.45, 1.8, and 1.63 Å resolution, respectively. All three amino acids occupy the active site of the enzyme but do not form a covalent bond with pyridoxal 5′-phosphate. Hydrophobic interactions between the active site residues and the side groups of the substrates and the inhibitor are supposed to cause noncovalent binding. Arg374 and Ser339 are involved in the binding of carboxyl groups of the substrates and the inhibitor. The hydroxyl of Tyr113 is a potential acceptor of a proton from the amino groups of the amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Met-PH :

L-1-amino-3-methylthiopropylphosphinic acid

MGL:

methionine γ-lyase

PLP:

pyridoxal-5′-phosphate

References

  1. Tanaka, H., Esaki, N., and Soda, K. (1985) Enzyme Microb. Technol., 7, 530–537.

    Article  CAS  Google Scholar 

  2. Alferov, K. V., Faleev, N. G., Demidkina, T. V., Khurs, E. N., Morozova, E. A., and Khomutov, R. M. (2006) Dokl. Biokhim. Biofiz., 407, 102–105.

    CAS  Google Scholar 

  3. Dingwall, J. G. (1986) Abstr. III Int. Conf. Chem. and Biotech. Biol. Active Natural Products, Sofia, Bulgaria, Vol. 1, pp. 87–103.

    Google Scholar 

  4. Zhukov, Yu. N., Vavilova, N. A., Osipova, T. I., Voinova, T. M., Khurs, E. N., Dzhavakhiya, V. G., and Khomutov, R. M. (2004) Dokl. Akad. Nauk, 397, 120–123.

    Google Scholar 

  5. Khomutov, R. M., Zhukov, Yu. N., Khomutov, A. R., Khurs, E. N., Kramer, D. L., Miller, J. T., and Porter, C. W. (2000) Bioorg. Khim., 26, 718–720.

    PubMed  CAS  Google Scholar 

  6. El-Sayed, Ashraf S. (2010) Appl. Microbiol. Biotechnol., 86, 445–467.

    Article  PubMed  CAS  Google Scholar 

  7. Manukhov, I. V., Mamaeva, D. V., Rastorguev, S. M., Faleev, N. G., Morozova, E. A., Demidkina, T. V., and Zavilgelsky, G. B. (2005) J. Bacteriol., 187, 3889–3893.

    Article  PubMed  CAS  Google Scholar 

  8. Ito, S., Nakamura, T., and Eguchi, Y. (1976) J. Biochem., 79, 1263–1272.

    PubMed  CAS  Google Scholar 

  9. Nakayama, T., Esaki, N., Lee, W.-J., Tanaka, I., Tanaka, H., and Soda, K. (1984) Agric. Biol. Chem., 48, 2367–2369.

    CAS  Google Scholar 

  10. Kreis, W., and Hession, C. (1973) Cancer Res., 33, 1862–1865.

    PubMed  CAS  Google Scholar 

  11. Yoshimura, M., Nakano, Y., Yamashita, Y., Oho, T., Saito, T., and Koga, T. (2000) Infect. Immunol., 68, 6912–6916.

    Article  CAS  Google Scholar 

  12. Tokoro, M., Asai, T., Kobayashi, S., Takeuchi, T., and Nozaki, T. (2003) J. Biol. Chem., 278, 42717–42727.

    Article  PubMed  CAS  Google Scholar 

  13. Lockwood, B., and Coombs, G. (1991) Biochem. J., 279, 675–682.

    PubMed  CAS  Google Scholar 

  14. Rebeille, F., Jabrin, S., Bligny, R., Loizeau, K., Gambonnet, B., van Wilder, V., Douce, R., and Ravanel, S. (2006) Proc. Natl. Acad. Sci. USA, 103, 15687–15692.

    Article  PubMed  CAS  Google Scholar 

  15. Coombs, G. H., and Mottram, J. C. (2001) Antimicrob. Agents Chemother., 45, 1743.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshimura, M., Nakano, Y., and Koga, T. (2002) Biochem. Biophys. Res. Commun., 292, 964–968.

    Article  PubMed  CAS  Google Scholar 

  17. Sato, D., Kobayashi, S., Yasui, H., Shibata, N., Toru, T., Yamamoto, M., Tokoro, G., Ali, V., Soga, T., Takeuchi, T., Suematsu, M., and Nozaki, T. (2010) Int. J. Antimicrob. Agents, 35, 56–61.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshioka, T., Wada, T., Uchida, N., Maki, H., Yoshida, H., Ide, N., Kasai, H., Hojo, K., Shono, K., Maekawa, R., Yagi, S., Hoffman, R. M., and Sugita, K. (1998) Cancer Res., 58, 2583–2587.

    PubMed  CAS  Google Scholar 

  19. Miki, K., Xu, M., An, Z., Wang, X., Yang, M., Al-Refaie, W., Sun, X., Baranov, E., Tan, Y., Chishima, T., Shimada, H., Moossa, A. R., and Hoffman, R. M. (2000) Cancer Gene Ther., 7, 332–338.

    Article  PubMed  CAS  Google Scholar 

  20. Miki, K., Al-Refaie, W., Xu, M., Jiang, P., Tan, Y., Bouvet, M., Zhao, M., Gupta, A., Chishima, T., Shimada, H., Makuuchi, M., Moossa, A. R., and Hoffman, R. M. (2000) Cancer Res., 60, 2696–2702.

    PubMed  CAS  Google Scholar 

  21. Tan, Y., Xu, M., and Hoffman, R. M. (2010) Anticancer Res., 30, 1041–1046.

    PubMed  CAS  Google Scholar 

  22. Hoffman, R. M. (1997) Hum. Cell, 10, 69–80.

    PubMed  CAS  Google Scholar 

  23. Hanniffy, S. B., Philo, M., Pelaez, C., Gasson, M. J., Requena, T., and Martinez-Cuesta, M. C. (2009) Appl. Environ. Microbiol., 75, 2326–2332.

    Article  PubMed  CAS  Google Scholar 

  24. Esaki, N., Suzuki, T., Tanaka, H., Soda, K., and Rando, R. R. (1977) FEBS Lett., 84, 309–312.

    Article  PubMed  CAS  Google Scholar 

  25. Esaki, N., Tanaka, H., Uemura, S., Suzuki, T., and Soda, K. (1979) Biochemistry, 18, 407–410.

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka, H., Esaki, N., and Soda, K. (1977) Biochemistry, 16, 100–6.

    Article  PubMed  CAS  Google Scholar 

  27. Inoue, H., Inagaki, K., Adachi, N., Tamura, T., Esaki, N., Soda, K., and Tanaka, H. (2000) Biosci. Biotechnol. Biochem., 64, 2336–2343.

    Article  PubMed  CAS  Google Scholar 

  28. Takakura, T., Mitsushima, K., Yagi, S., Inagaki, K., Tanaka, H., Esaki, N., Soda, K., and Takimoto, A. (2004) Anal. Biochem., 327, 233–240.

    Article  PubMed  CAS  Google Scholar 

  29. McKie, A. E., Edlind, T., Walker, J., Mottram, J. C., and Coombs, G. H. (1998) J. Biol. Chem., 273, 5549–5556.

    Article  PubMed  CAS  Google Scholar 

  30. Yamagata, W., Kamei, K., Nozaki, T., Harada, S., and Sato, D. (2006) Acta Cryst., F62, 1034–1036.

    Google Scholar 

  31. Kudou, D., Misaki, S., Yamashita, M., Tamura, T., Takakura, T., Yoshioka, T., Yagi, S., Hoffman, R. M., Takimoto, A., Esaki, N., and Inagaki, K. (2007) J. Biochem. (Tokyo), 141, 535–544.

    CAS  Google Scholar 

  32. Nikulin, A., Revtovich, S., Morozova, E., Nevskaya, N., Nikonov, S., Garber, M., and Demidkina, T. (2008) Acta Cryst., D64, 211–218.

    CAS  Google Scholar 

  33. Bourenkov, G. P., and Popov, A. N. (2006) Acta Cryst., D62, 58–64.

    CAS  Google Scholar 

  34. Kabsch, W. (2010) Acta Cryst., D66, 125–132.

    CAS  Google Scholar 

  35. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and Terwilliger, T. C. (2002) Acta Cryst., D58, 1948–1954.

    CAS  Google Scholar 

  36. Emsley, P., and Cowtan, K. (2004) Acta Cryst., D60, 2126–2132.

    CAS  Google Scholar 

  37. Mamaeva, D. V., Morozova, E. A., Nikulin, A. D., Revtovich, S. V., Nikonov, S. V., Garber, M. B., and Demidkina, T. V. (2005) Acta Cryst., F61, 546–549.

    CAS  Google Scholar 

  38. Kack, H., Sandmark, J., Gibson, K., Schneider, H., and Lindqvist, Y. (1999) J. Mol. Biol., 291, 857–876.

    Article  PubMed  CAS  Google Scholar 

  39. Nakayama, T., Esaki, N., Sugie, K., Beresov, T. T., Tanaka, H., and Soda, K. (1984) Anal. Biochem., 138, 421–424.

    Article  PubMed  CAS  Google Scholar 

  40. Ronda, L., Bazhulina, N. P., Morozova, E. A., Revtovich, S. V., Chekhov, V. O., Nikulin, A. D., Demidkina, T. V., and Mozzarelli, A. (2010) Biochim. Biophys. Acta, Epub ahead of print.

  41. Clausen, T., Huber, R., Laber, B., Pohlenz, H. D., and Messerschmidt, A. (1996) J. Mol. Biol., 262, 202–224.

    Article  PubMed  CAS  Google Scholar 

  42. Messerschmidt, A., Worbs, M., Steegborn, C., Wahl, M. C., Huber, R., Laber, B., and Clausen, T. (2003) Biol. Chem., 384, 373–386.

    Article  PubMed  CAS  Google Scholar 

  43. Faleev, N. G., Alferov, K. V., Tsvetikova, M. A., Morozova, E. A., Revtovich, S. V., Khurs, E. N., Vorob’ev, M. M., Phillips, R. S., Demidkina, T. V., and Khomutov, R. M. (2009) Biochim. Biophys. Acta, 1794, 1414–1420.

    PubMed  CAS  Google Scholar 

  44. Morozova, E. A., Bazhulina, N. P., Anufriyeva, N. V., Mamayeva, D. V., Tkachev, Y. V., Streltsov, S. A., Timofeev, V. P., Faleev, N. G., and Demidkina, T. V. (2010) Biochemistry (Moscow), 75, 1272–1280.

    Article  CAS  Google Scholar 

  45. Manukov, I. V., Mamayeva, D. V., Morozova, E. A., Rastorguyev, S. M., Faleev, N. G., Demidkina, T. Z., and Zavigelsky, G. B. (2006) Biochemistry (Moscow), 71, 361–369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Nikulin, T. V. Demidkina or R. M. Khomutov.

Additional information

Original Russian Text © S. V. Revtovich, E. A. Morozova, E. N. Khurs, L. N. Zakomirdina, A. D. Nikulin, T. V. Demidkina, R. M. Khomutov, 2011, published in Biokhimiya, 2011, Vol. 76, No. 5, pp. 692–700.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM10-394, April 3, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revtovich, S.V., Morozova, E.A., Khurs, E.N. et al. Three-dimensional structures of noncovalent complexes of Citrobacter freundii methionine γ-lyase with substrates. Biochemistry Moscow 76, 564–570 (2011). https://doi.org/10.1134/S0006297911050063

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911050063

Key words

Navigation