Skip to main content
Log in

Microbial l-methioninase: production, molecular characterization, and therapeutic applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Methioninase is ubiquitous in all organisms except in mammals. It mainly catalyzes the, α, γ-elimination of l-methionine to α-ketobutyrate, methanethiol, and ammonia. Unlike normal cells, methionine dependency was reported as a biochemical phenomenon among various types of cancer cells. Thus, l-methioninase is the universal protocol for triggering the majority of tumor cells. This review is an attempt to briefly describe the occurrence of the biochemical and molecular properties of l-methioninase by a comparative manner to the eukaryotic and prokaryotic source for the maximum exploitation in the therapeutic field. The combination of l-methioninase treatment, gene therapy, and chemotherapeutic drugs clearly explores the various therapeutic aspects of this enzyme. Finally, the perspectives for increasing the therapeutic efficacy of this enzyme were described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu-Seidah AA, Youssef MS (2000) Characterization of l-methionine g-lyase from Cladosporium cladosporioides. Bull Fac Sci Assiut Univ Egypt 130:83–91

    Google Scholar 

  • Agrawal NR, Bukowski RM, Rybicki LA, Kurtzberg J, Cohen LJ, Hussein MA (2003) A phase I-II trial of polyethylene glycol-conjugated l-asparaginase in patients with multiple myloma. Cancer 98:94–99

    CAS  Google Scholar 

  • Akobe K (1936) Darstellung von D- und L-α-oxy-γ-methiobuttersaure und damit ausgefuhrte Ernahrungsversuche. Hoppe-Seylers Z, Physiol Chem 244:14–18

    CAS  Google Scholar 

  • Amarita F, Yvon M, Nardi M, Chambellon E, Delettre J, Bonnarme P (2004) Identification and functional analysis of the gene encoding methionine-γ-lyase in Brevibacterium linens. Appl Environ Microbiol 70:7348–7354

    CAS  Google Scholar 

  • Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111:1–14

    Google Scholar 

  • Balcao VM, Mateo C, Fernandez-Lafuente R, Malcata FX, Guisan JM (2001) Coimmobilization of l-asparaginase and glutamate dehydrogenase onto highly activated supports. Enzyme Microbial Technol 28:696–704

    CAS  Google Scholar 

  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alteration in DA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    CAS  Google Scholar 

  • Bergstron M, Ericson K, Hagenfeldt L, Mosskin M, von Holst H, Noren G, Eriksson L, Ehrin E, Johnström P (1987) PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 11:208–213

    Article  Google Scholar 

  • Bertoldi M, Cellini B, Clausen T, Voltattorni CB (2002) Spectroscopic and kinetic analyses reveal the pyridoxal 5-phosphate binding mode and the catalytic features of Treponema denticola. Biochem 41:9153–9164

    CAS  Google Scholar 

  • Bomalaski JS, Holtsberg FW, Ensor CM, Clark MA (2002) Uricase formulated with polyethylene glycol (uricase-PEG20): biochemical rationale and preclinical studies. J Rheumatol 29:1942–1949

    CAS  Google Scholar 

  • Bondar DC, Beckerich J-M, Bonnarme P (2005) Involvement of a branched-chain aminotransferase in production of volatile sulfur compounds in Yarrowia lipolytica. Appl Environ Microbiol 71:4585–4591

    CAS  Google Scholar 

  • Bonnarme P, Psoni L, Spinnler HE (2000) Diversity of l-methionine catabolism pathways in cheese-ripening bacteria. Appl Environ Microbiol 66:5514–5517

    CAS  Google Scholar 

  • Bonnarme P, Arfi K, Dury C, Helinck S, Yvon M, Spinnler HE (2001) Sulfur compound production by Geotrichum candidum from l-methionine: importance of the transamination step. FEMS Microbiol Lett 205:247–252

    CAS  Google Scholar 

  • Breillout F, Antoine E, Poupon MF (1990) Methionine dependency of malignant tumors: a possible approach for therapy. J Natl Cancer Inst 82:1628–1632

    CAS  Google Scholar 

  • Canellakis ES, Tarver H (1953) Studies on the protein synthesis in vitro. IV. Concerning the apparent uptake of methionine by particulate preparations from liver. Arch Biochem Biophys 42:387–398

    CAS  Google Scholar 

  • Cellarier E, Durando X, Vasson MP, Farges MC, Demiden A, Maurizis JC, Madelmont JC, Chollet P (2003) Methionine dependency and cancer treatment. Cancer Treat Rev 29:489–499

    CAS  Google Scholar 

  • Challenger F (1959) Aspects of the organic chemistry of sulfur. Academic, New York

    Google Scholar 

  • Chen SS, Walgate JH, Duerre JA (1971) Oxidative deamination of sulfur amino acids by bacterial and snake venom l-amino acid oxidase. Arch Biochem Biophys 146:54–63

    CAS  Google Scholar 

  • Chin H-W, Lindsay RC (1994) Ascorbate and transition–metal mediation of methanethiol to dimethyl disulfide and dimethyl trisulfide. Food Chem 49:387–392

    CAS  Google Scholar 

  • Choi SW, Mason JB (2002) Folate status: effects on pathways of colorectal carcinogenesis. J Nut 132:2413–2418

    Google Scholar 

  • Clausen T, Huber R, Prade L, Wahl MC, Messerschimdt A (1998) Crystal structure of Escherichia coli cystathionine γ-synthase at 1.5 Å resolution. EMBO J 17:6827–6838

    CAS  Google Scholar 

  • Cooper AJL (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52:187–222

    CAS  Google Scholar 

  • Davis CD, Uthus EO (2004) DNA methylation, cancer susceptibility and nutrient interactions. Exp Biol Med 229:988–995

    CAS  Google Scholar 

  • Delgado-Andrade C, Seiquer I, Navarro MP (2007) Millard reaction products consumption: magnesium bioavailability and bone mineralization in rats. Food Chem 107:631–639

    Google Scholar 

  • Devita VT, Hellman S, Rosenberg SA (1993) Cancer principles and practice of oncology. Lippincott, Philadelphia, pp 387–389

    Google Scholar 

  • Dias B, Weimer B (1998) Purification and characterization of l-methionine γ-lyase from Brevibacterium linens BL2. Appl Environ Microbiol 64:3327–3331

    CAS  Google Scholar 

  • Duchange N, Zakin MM, Ferrara P, Saint-Girons I, Park I, Tran SV, Py MC, Cohen GN (1983) Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and the 5′- and 3′-flanking regions of the metBL operon. J Biol Chem 258:14868–14871

    CAS  Google Scholar 

  • Eliot AC, Kirsch JF (2002) Modulation of the internal aldimine pKa’s of 1-amino-cyclopropane-1-carboxylate synthase and aspartate aminotransferase by specific active site resides. Biochem 41:3836–3842

    CAS  Google Scholar 

  • El-Sayed ASA (2008) l-Glutaminase production by Trichoderma koningii under solid-state fermentation. Indian J Microbiol 49:243–250

    Google Scholar 

  • El-Sayed ASA (2009) l-Methioninase production by Aspergillus flavipes under solid state fermentation. J Basic Microbiol 49:331–341

    CAS  Google Scholar 

  • Epelbaum S, Chipman DM, Barak Z (1996) Metabolic effects of inhibitors of two enzymes of branched-chain amino acid pathway in Salmonella typhimurium. J Bacteriol 178:1187–1196

    CAS  Google Scholar 

  • Faleev NG, Troitskaya MV, Paskonova EA, Saporovskaya MB, Belikov VM (1996) l-Methionine γ-lyase in Citrobacter intermedius cells. Stereochemical requirements with respect to the thiol structure. Enzyme Microb Technol 19:590–593

    CAS  Google Scholar 

  • Fearon CW, Rodkey JA, Abeles RH (1982) Identification of the active-site residue of gamma-cystathionase labeled by the suicide inactivator beta, beta, beta-trifluoroalanine. Biochem 21:3790–3794

    CAS  Google Scholar 

  • Ferchichi M, Hemme D, Nardi M, Pamboukdjian N (1985) Production of methanethiol from methionine by Brevibacterium linens CNRZ918. J Gen Microbiol 131:715–723

    CAS  Google Scholar 

  • Fiskerstrand T, Christensen B, Tysnes OB, Ueland PM, Refusm H (1994) Development and reversion of methionine dependence in a human glioma cell line: relation to homocysteine remethylation and cobalamin status. Cancer Res 54:4899–4906

    CAS  Google Scholar 

  • Fitchen JH, Riscoe MK, Dana BW, Lawrence HJ, Ferro AJ (1986) Methylthioadenosine phosphorylase deficiency in human leukemias and solid tumors. Cancer Res 46:5409–5412

    CAS  Google Scholar 

  • Fomon SJ, Ziegler EE, Nelson SE, Edwards BB (1986) Requirement for sulfur-containing amino acids in infants. J Nutr 116:1405–1422

    CAS  Google Scholar 

  • Fox JL (1999) Gene therapy safety issues come to fore. Nat Biotechnol 17:1153

    CAS  Google Scholar 

  • Fukamachi H, Nakano Y, Kano S, Shibata Y, Abiko Y, Yamashita Y (2005) High production of methylmercaptan by l-methionine-alpha-deamino-gamma-mercapto-methane lyase from Treponema denticola. Biochem Biophys Res Commun 331:127–131

    CAS  Google Scholar 

  • Goseki N, Yamazaki S, Endo M, Onodera T, Kosaki G, Hibino Y, Kuwahata T (1992) Antitumor effect of methionine-depleting total parenteral nutrition with doxorubicin administration on Yoshida sarcoma-bearing rats. Cancer 69:1865–1872

    CAS  Google Scholar 

  • Goseki N, Yamazaki S, Shimojyo K, Kando F, Maruyama M, Endo M, Koike M, Takahashi H (1995) Synergistic effect of methionine-depleting total parenteral nutrition with 5-fluorouracil on human gastric cancer. A randomized, prospective clinical trial. Jpn J Cancer Res 86:484–489

    CAS  Google Scholar 

  • Guo H, Lishko V, Herrera H, Groce A, Kubota T, Hoffman RM (1993) Therapeutic tumor specific cell-cycle block induced by methionine starvation in vivo. Cancer Res 53:5676–5679

    CAS  Google Scholar 

  • Gupta A, Miki K, Xu M, Yamamoto N, Mossa AR, Hoffman RM (2003) Combination efficiency of doxorubicin and adenoviral methioninase gene therapy with prodrug selenomethionine. Anticancer Res 23:1181–1188

    CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    CAS  Google Scholar 

  • Han Q, Xu M, Tang L, Tan X-Z, Tan X-Y, Tan Y, Hoffman RM (2002) Homogenous nonradioactive enzymatic assay for plasma pyridoxal 5-phosphate. Clin Chem 48:1560–1564

    CAS  Google Scholar 

  • Helpern BC, Clark BR, Hardy DN, Helpern RM, Smith RA (1974) The effect of replacement of methionine by homocysteine on survival of malignant and normal adult mammalian cells in culture. Proc NatI Acad Sci USA 71:1133–1136

    Google Scholar 

  • Hirs CHW (1967) Determination of cystine as cysteic acid. Methods Enzymol 11:59–62

    CAS  Google Scholar 

  • Hoffman RM (1982) Methionine dependence in cancer cells, a review. In Vitro 18:421–428

    CAS  Google Scholar 

  • Hoffman RM (1984) Altered methionine metabolism, DNA methylation, and oncogene expression in carcinogenesis: a review and synthesis. Biochem Biophys Acta 738:49–87

    CAS  Google Scholar 

  • Hoffman RM (1985) Altered methionine metabolism and transmethylatin in cancer. Anticancer Res 5:1–30

    CAS  Google Scholar 

  • Hoffman RM, Erbe RW (1976) High in vivo rate of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73:1523–1527

    CAS  Google Scholar 

  • Hoshiya Y, Kubota T, Inada T, Kitajima M, Hoffman RM (1997) Methionine-depletion modulates the efficiency of 5-fluorouracil in human gastric cancer in nude mice. Anticancer Res 17:4371–4375

    CAS  Google Scholar 

  • Hou KC, Zaniewski R (1990) Endotoxin removal by anion-exchange polymeric matrix. Biotechnol Appl Biochem 12:315–324

    CAS  Google Scholar 

  • Hullo M-F, Auger S, Soutourina O, Barzu O, Yvon M, Danchin A, Martin-Verstraete I (2007) Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 189:187–197

    CAS  Google Scholar 

  • Irmler S, Raboud S, Beisert B, Rauhut D, Berthoud H (2008) Cloning and characterization of two Lactobacillus casei encoding a cystathionine lyase. Appl Environ Microbiol 74:99–106

    CAS  Google Scholar 

  • Inoue H, Inagaki K, Sugimoto M, Esaki N, Soda K, Tanaka H (1995) Structural analysis of the l-methionine γ-lyase gene from Pseudomonas putida. J Biochem 117:1120–1125

    CAS  Google Scholar 

  • Ito S, Nakamura T, Eguchi Y (1976) Purification and characterization of methioninase from Pseudomonas putida. J Biochem 79:1263–1272

    CAS  Google Scholar 

  • Jacobsen S, North J, Rao N, Mangum JH (1977) 5-Methyltetrahydrofolate: synthesis and utilization in normal and SV40-transformed BHK-12 cells. Biochem Biophys Res Commun 57:666–675

    Google Scholar 

  • Johnston M, Jankowski D, Marcotte P, Tanaka H, Esaki N, Soda K, Walsh C (1979) Suicide inactivation of bacterial cystathionine γ-synthetase and methionine γ-lyase during processing of l-propargylglycine. Biochem 18:4690–4701

    CAS  Google Scholar 

  • Johnston M, Rains R, Walsh C, Firstone RA (1980) Mechanism-based enzyme inactivation using an allyl sulfoxide-allyl sulfenate ester rearrangement. J Am Chem Soc 102:424–4250

    Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genetic 3:415–428

    CAS  Google Scholar 

  • Kallio RE, Larson AD (1955) Methionine degradation by a species of Pseudomonas. A symposium on amino acid metabolism. Johns Hopkins Press, Baltimore, pp 616–631

    Google Scholar 

  • Kano Y, Sakamoto S, Kasahara T, Kusumoto K, Hida K, Soda K, Ozawa K, Miura Y, Takaku F (1982) Methionine dependency of cell growth in normal and malignant hematopoietic cells. Cancer Res 42:3090–3092

    CAS  Google Scholar 

  • Kato Y, Komiya K, Sasaki H, Hashimoto T (1980) Comparison of TSK-gel PW type and SW type in high speed aqueous gel-permeation chromatography. J Chromatogr 193:311–315

    CAS  Google Scholar 

  • Kenyon SH, Waterfield CJ, Timbrell JA, Nicolaou A (2002) Methionine synthase activity and sulphur amino acid levels in the rat liver tumor cells HTC and Phi-1. Biochem Pharmacol 63:381–391

    CAS  Google Scholar 

  • Khalaf SA, El-Sayed ASA (2009) l-Methioninase production by filamentous fungi: I—screening and optimization under submerged conditions. Curr Microbiol 58:219–226

    CAS  Google Scholar 

  • Klimberg VS, McClellan JL (1996) Glutamine, cancer and its therapy. Am J Surg 172:418–424

    CAS  Google Scholar 

  • Kokkinakis DM, Schold SC Jr, Hori H, Nobori T (1997) Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutr Cancer 29:195–204

    CAS  Google Scholar 

  • Kreis W, Hession C (1973a) Isolation and purification of l-methionine-α-deamino-γ-mercapto-methane-lyase (l-methioninase) from Clostridium sporogenes. Cancer Res 33:1862–1865

    CAS  Google Scholar 

  • Kreis W, Hession C (1973b) Biological effects of enzymatic deprivation of l-methionine in cell culture and an experimental tumor. Cancer Res 33:1866–1869

    CAS  Google Scholar 

  • Kreis W, Goodenow M (1978) Methionine requirement ad replacement by homocysteine in tissue cultures of selected rodent and human malignant and normal cells. Cancer Res 38:2259–2260

    CAS  Google Scholar 

  • Kudou D, Misaki S, Yamashita M, Tamura T, Takakura T, Yoshioka T, Yagi S, Hoffman RM, Takimoto A, Esaki N, Inagaki K (2007) Structure of the antitumor enzyme l-methionine γ-lyase from Pseudomonas putida at 1.8 A resolution. J Biochem 141:535–544

    CAS  Google Scholar 

  • Kudou D, Misaki S, Yamashita M, Tamura T, Esaki N, Inagaki K (2008) The role of cysteine 116 in the active site of the antitumor enzyme l-methionine γ-lyase from Pseudomonas putida. Biosci Biotechnol Biochem 72:1722–1730

    CAS  Google Scholar 

  • Kusakabe H, Kodama K, Kuninaka A, Yoshino H, Soda K (1980) A new antitumor enzyme, l-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J Biol Chem 255:976–981

    CAS  Google Scholar 

  • Lee TS, Vaghjiani JD, Lye GJ, Turner MK (2000) A systematic approach to the large scale production on protein crystals. Enzyme Microb Technol 26:585–592

    Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmed M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptoic protease cascade. Cell 91:479–489

    CAS  Google Scholar 

  • Lishko VK, Lishko OV, Hoffman RM (1993) The preparation of endotoxin-free l-methionine-α-deamino-γ-mercaptomethane-lyase (l-Methioninase) from Pseudomonas putida. Protein Expr Purif 4:529–533

    CAS  Google Scholar 

  • Liteplo RG, Hipwell SE, Rosenblatt DS, Sillaots S, Lue-Shing H (1991) Changes in cobalamin metabolism are associated with the altered methionine auxotrophy of highly growth autonomous human melanoma cells. J Cell Physiol 149:332–338

    CAS  Google Scholar 

  • Lockwood B, Coombs G (1991) Purification and characterization of methionine γ-lyase from Trichomonas vaginalis. Biochem J 279:675–682

    CAS  Google Scholar 

  • Luka Z, Capdevila A, Mato JM, Wagner C (2006) A glycine N-methyltransferase knockout mouse model for humans with deficiency of this enzyme. Transgenic Res 15:393–397

    CAS  Google Scholar 

  • Mangum J, North J (1968) Vitamins B12 dependent methionine biosynthesis in HEp-2 cells. Biochem Biophys Res Commun 32:105–110

    CAS  Google Scholar 

  • Manukhov I, Mamaeva DV, Rastorguev SM, Faleev NG, Morozova EA, Demidkina TV, Zavilgelsky GB (2005) A gene encoding l-methionine γ-lyase is present in Enterobacteriaceae family genomes: identification and characterization of Citrobacter freundii l-methionine γ-lyase. J Bacteriol 187:3889–3893

    CAS  Google Scholar 

  • Martinez-Cuesta MC, Pelaez C, Eagles J, Gasson MJ, Requena T, Hanniffy SB (2006) YtjE from Lactococcus lactis IL1403 is a C–S lyase with α, γ-elimination activity toward methionine. Appl Environ Microbiol 72:4878–4884

    CAS  Google Scholar 

  • Martinez-Lopez N, Varela-Rey M, Ariz U, Embade N, Vazquez-Chantada M, Fernandez-Ramos D, Gomez-Santos L, Lut SC, Mato JM, Martinez-Chantar ML (2008) S-adenosylmethionine and proliferation: new pathways, new targets. Biochem Soci Trans 63:848–852

    Google Scholar 

  • Mecham JO, Rowitch D, Wallace CD, Stern PH, Hoffman RM (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Comm 117:429–434

    CAS  Google Scholar 

  • Messerschmidt A, Worbs M, Steegborn C, Wahl MC, Huber R, Laber B, Clausen T (2003) Determination of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine γ-lyase from yeast and intra familiar structure comparison. Biol Chem 384:373–386

    CAS  Google Scholar 

  • Miki K, Al-Refaie W, Xu M, Jiang P, Tan Y, Bouvet M, Zhao M, Gupta A, Chishima T, Shimada H, Makuuchi M, Mossa AR, Hoffman RM (2000a) Methioninase gene therapy of human cancer cells is synergistic with recombinant methioninase treatment. Cancer Res 60:2696–2702

    CAS  Google Scholar 

  • Miki K, Xu M, An Z, Wang X, Yang M, Al-Refaie W, Sun X, Baranov E, Tan Y, Chishima T, Shimada H, Mossa AR, Hoffman RM (2000b) Survival efficacy of the combination of the methioninase gene and methioninase in a lung cancer orthotopic model. Cancer Gene Therp 2:332–338

    Google Scholar 

  • Miki K, Xu M, Gupta A, Ba Y, Tan Y, Al-Refaie W, Bouvet M, Makuuchi M, Mossa AR, Hoffman RM (2001) Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate. Cancer Res 61:6805–6810

    CAS  Google Scholar 

  • Miwatani T, Omukai Y, Nakada D (1954) Enzymatic cleavage of methionine and homocysteine by bacteria. Med J Osaka Univ 5:347–352

    CAS  Google Scholar 

  • Momparler RL (2003) Cancer epigenetics. Oncogene 22:6479–6483

    CAS  Google Scholar 

  • Motoshima H, Inagaki K, Kumasaka T, Furuichi M, Inoue H, Tamura T, Esaki N, Soda K, Tanaka N, Yamamoto M, Tanaka H (2000) Crystal structure of the pyridoxal 5′-phosphate dependent l-methioninase γ-Lyase from Pseudomonas putida. J Biochem 128:349–354

    CAS  Google Scholar 

  • Myers EW, Miller W (1988) Optimal alignments in linear space. Comput Appl Biosci 4:11–17

    CAS  Google Scholar 

  • Nakayama T, Esaki N, Lee W-J, Tanaka I, Tanaka H, Soda K (1984) Purification and properties of l-methioninase γ-lyase from Aeromonas sp. Agric Biol Chem 48:2367–2369

    CAS  Google Scholar 

  • Nakayama T, Esaki N, Tanaka H, Soda K (1988a) Chemical modification of cysteine residues of l-methionine γ-lyase. Agric Biol Chem 52:177–183

    CAS  Google Scholar 

  • Nakayama T, Esaki N, Tanaka H, Soda K (1988b) Specific labeling of the essential cysteine residue of l-methionine γ-lyase with a cofactor analogue, N-(bromoacetyl) pyridoxamine Phosphate. Biochem 27:1587–1591

    CAS  Google Scholar 

  • Napier MP, Sharma SK, Springer CJ, Bagshawe KD, Green AJ, Martin J, Stribbling SM, Cushen N, O’Malley D, Begent RHJ (2000) Antibody-directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinoma. Clin Cancer Res 6:765–772

    CAS  Google Scholar 

  • Nikulin A, Revtovich S, Morozova E, Neveskaya N, Nikonov S, Garber M, Demidkina T (2008) High resolution structure of methionine γ-lyase from Citrobacter freundii. Acta Crystallogr 64:211–218

    Google Scholar 

  • Nobori T, Kerras JG, Della Ragione F, Waltz TA, Chen PP, Carson DA (1991) Absence of methylthioadenosine phosphorylase in human gliomas. Cancer Res 51:3193–3197

    CAS  Google Scholar 

  • Ohigashi K, Tsunetoshi A, Ichihara K (1951) The role of pyridoxal in methyl-mercaptan formation, partial purification and resolution of methioninase. Med J Osaka Univ 2:111–117

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Selvakumar P, Nigam P (1999) Solid-state fermentation for production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Pirkov I, Norbeck J, Gustafesson L, Albers E (2008) A complete inventory of all enzymes in the eukaryotic methionine salvage pathway. FEBS J 275:4111–4120

    CAS  Google Scholar 

  • Poirson-Bichat F, Lopez R, Bras Goncalves RA, Miccoli L, Bourgeois Y, Demerseman P, Poisson M, Dutrillaux B, Poupon MF (1997) Methionine deprivation and methionine analogs inhibit cell proliferation and growth of human xenografted gliomas. Life Sci 60:919–931

    CAS  Google Scholar 

  • Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1:11–19

    CAS  Google Scholar 

  • Ruiz-Herrera J, Starkey RL (1969a) Dissimilation of methionine by fungi. J Bacteriol 99:544–551

    CAS  Google Scholar 

  • Ruiz-Herrera J, Starkey RL (1969b) Dissimilation of methionine by a demethiolase of Aspergillus species. J Bacteriol 99:764–770

    CAS  Google Scholar 

  • Ruiz-Herrera J, Starkey RL (1970) Dissimilation of methionine by Achromobacter starkeyi. J Bacteriol 104:1286–1293

    CAS  Google Scholar 

  • Santini V, Kantarjian H, Issa JP (2001) Changes in DNA methylation in neoplasia: patho-physiology and therapeutic implications. Ann Intern Med 134:573–586

    CAS  Google Scholar 

  • Sato D, Yamagata W, Harada S, Nozaki T (2008) Kinetic characterization of methionine γ-lyase from the enteric protozoan parasite Entamoeba histolytica against physiological substrates and trifluoromethionine, a promising lead compound against amoebiasis. FEBS J 275:548–560

    CAS  Google Scholar 

  • Secades P, Guijarro JA (2001) Purification and characterization of a psychrophilic calcium-induced growth-phase-dependent metalloprotease from the fish pathogen Flavbacterium psychrophilum. Appl Environ Microbiol 67:2436–2444

    CAS  Google Scholar 

  • Segal W, Starkey RL (1969) Microbial decomposition of methionine and identity of the resulting sulfur products. J Bacteriol 98:908–913

    CAS  Google Scholar 

  • Seiflein TA, Lawrence JG (2001) Methionine-to-cysteine recycling in Klebsiella aerogenes. J Bacteriol 183:336–346

    CAS  Google Scholar 

  • Sekowska A, Denervaud V, Ashida H, Michoud K, Hass D, Yokota A, Danchin A (2004) Bacterial variations on the methionine salvage pathway. BMC Microbiol 4:1–17

    Google Scholar 

  • Soares AL, Guimaraes GM, Polakiewicz B, de Moraes Pitombo RN, Abrahao-Neto J (2002) Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli l-asparaginase. Int J Pharm 237:163–170

    CAS  Google Scholar 

  • Soda A, Tanaka H, Esaki N (1983) Multifunctional biocatalysis: methionine-γ-lyase. Trends Biochem Sci 8:214–217

    CAS  Google Scholar 

  • Sridhar V, Xu M, Han Q, Sun X, Tan Y, Hoffman RM, Prasad GS (2000) Crystallization and preliminary crystallographic characterization of recombinant l-methionine-α-deamino-γ-mercaptomethane lyase (Methioninase). Acta Crystallographica D56:1665–1667

    CAS  Google Scholar 

  • Stahl WH, McQue B, Mandels GR, Siu RGH (1949) Studies on the microbiological degradation of wool. 1. Sulfur metabolism. Arch Biochem 20:422–432

    CAS  Google Scholar 

  • Stern PH, Wallace CD, Hoffman RM (1984) Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Phys 119:29–34

    CAS  Google Scholar 

  • Sun X, Yang Z, Li S, Tan Y, Zhang N, Wang X, Yagi S, Yoshioka T, Takimoto A, Mitsushima K, Suginaka A, Frankel EP, Hoffman RM (2003) In vivo efficiency of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5-phosphate supplementation. Cancer Res 63:8377–8383

    CAS  Google Scholar 

  • Sun X, Yang Z, Li Y, Zhang N, Wang X, Yagi S, Yoshioka T, Suginaka A, Hoffman RM (2004) In vivo stabilization of polyethylene glycol (PEG)-modified recombinant methioninase (rMETase) activity by pyridoxal phosphate. Proc Amr Assoc Cancer Res 45

  • Swisher EM, Gonzalez RM, Taniguchi T, Garcia RL, Wash T, Goff BA, Welcsh P (2009) Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas. Mol Cancer 8:1–11

    Google Scholar 

  • Tan Y, Xu M, Guo H, Sun X, Kubota T, Hoffman RM (1996) Anticancer efficiency of methioninase in vivo. Anticancer Res 16:3931–3936

    CAS  Google Scholar 

  • Tan Y, Sun X, Xu M, An Z, Tan X, Tan X, Han Q, Miljkovic DA, Yang M, Hoffaman RM (1998) Polyethylene glycol conjugation of recombinant methioninase for cancer therapy. Protein Expr Purif 12:45–52

    CAS  Google Scholar 

  • Takagai T (1981) Confirmation of molecular weight of Aspergillus oryzae α-amylase using low angle laser light scattering technique in combination with high pressure silica gel chromatography. J Biochem 89:363–368

    Google Scholar 

  • Takakura T, Mitsushima K, Yagi S, Inagaki K, Tanaka H, Esaki N, Soda K, Takimoto A (2004) Assay method for antitumor l-methionine γ-lyase: comprehensive kinetic analysis of the complex reaction with l-methionine. Anal Biochem 327:233–240

    CAS  Google Scholar 

  • Takakura T, Ito T, Yagi S, Notsu Y, Itakura T, Nakamura T, Inagaki K, Esaki N, Hoffman RM, Takimoto A (2006) High-level expression and bulk crystallization of recombinant l-methionine γ-lyase, an anticancer agent. Appl Microbial Biotechnol 70:183–192

    CAS  Google Scholar 

  • Tanaka H, Esaki N, Yamamoto T, Soda K (1976) Purification and properties of methioninase from Pseudomonas ovalis. FEBS Lett 66:307–311

    CAS  Google Scholar 

  • Tanaka H, Esaki N, Soda K (1977) Properties of l-methionine γ-lyase from Pseudomonas ovalis. Biochem 16:100–106

    CAS  Google Scholar 

  • Tanaka H, Esaki N, Soda K (1985) A versatile bacterial enzyme: methionine γ-lyase. Enzyme Microb Technol 7:530–536

    CAS  Google Scholar 

  • Tang B, Li YN, Kruger WD (2000) Defects in methylthioadenosine phosphorylase are associated with but not responsible for methionine-dependent tumor cell growth. Cancer Res 60:5543–5547

    CAS  Google Scholar 

  • Tanase S, Kojima H, Morino Y (1979) Pyridoxal 5-phosphate binding site of pig heart alanine aminotransferase. Biochem 18:3002–3007

    CAS  Google Scholar 

  • Tokoro M, Asai T, Kobayashi S, Takeuchi T, Nozaki T (2003) Identification and characterization of two isoenzymes of methionine γ-lyase from Entamoeba histolytica. J Biol Chem 278:42717–42727

    CAS  Google Scholar 

  • Tsugo T, Matsuoka M (1962) The formation of volatile sulfur compounds during the ripening of the semi-soft white mould cheese. Proc Int Dairy Congr 16th, Copenhagen, pp. 385–394

  • Wakayama NI (2003) Effects of a strong magnetic field on protein crystals growth. Cryst Growth Des 3:17–24

    CAS  Google Scholar 

  • Wang M, Bsau A, Palm T, Hua S, Youngster S, Wang L (2006) Engineering an arginine catabolizing bioconjugate: biochemical and pharmacological characterization of pegylated derivatives of arginine deiminase from Mycoplasma arthriditis. Bioconjug Chem 17:1447–1459

    CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  Google Scholar 

  • Weisendanger S, Nisman B (1953) La l-methionine demercapto desaminase: Un novel enzyme a pyridoxal-phosphate. Compt Rend 237:764–765

    Google Scholar 

  • Yakoob J, Xue-Gong F, Guo-Ling H, Zheng Z (1998) DNA methylation and carcino-genesis in digestive neoplasms. W I G 4:174–178

    CAS  Google Scholar 

  • Yamamoto N, Gupta A, Xu M, Miki K, Tsugimoto Y, Tsuchiya H, Tomita K, Mossa AR, Hoffman AR (2003) Methioninase gene therapy with selenomethionine induces apoptosis in bcl-2-overproducing lung cancer cells. Cancer Gene Therp 10:445–450

    CAS  Google Scholar 

  • Yang Z, Wang J, Yoshioka T, Li B, Lu Q, Li S, Sun X, Tan Y, Yagi S, Frankel EP, Hoffman RM (2004) Pharmacokinetics, methionine depletion, and antigenicity of recombinant methioninase in primates. Clin Cancer Res 10:2131–2138

    CAS  Google Scholar 

  • Yoshimura M, Nakano Y, Yamashita Y, Oho T, Saito T, Koga T (2000) Formation of methylmercaptan from l-methionine by Porphyromonas gingivalis. Infect Immunol 68:6912–6916

    CAS  Google Scholar 

  • Yoshioka T, Wada T, Uchida N, Maki H, Yoshida H, Ide N, Kasai H, Hojo K, Shono K, Maekawa R, Yagi S, Hoffman RM, Sugita K (1998) Anticaner efficiency in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58:2583–2587

    CAS  Google Scholar 

  • Zhao R, Domann FE, Zhong W (2006) Apoptosis induced by selenomethionine and methioninase is superoxide-mediated and p53-dependent in human prostate cancer cells. Mol Cancer Therp 5:3275–3284

    CAS  Google Scholar 

  • Zeng H, Briske-Anderso M, Idso JP, Hunt CD (2006) The selenium metabolite methylselenol inhibits the migration and invasion potential of HT1080 tumor cells. J Nut 136:1528–1532

    CAS  Google Scholar 

  • Zlotkin SH, Anderson GH (1982) The development of cystathionase activity during the first year of life. Pediatr Res 16:65–68

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Prof. Dr. S. Izawa, Applied Biology Dep., Kyoto Institute of Technology, Kyoto, for his helpful suggestions and valuable discussions during this work. We thank Dr. S. Abdelazeim, Fukui Institute for Fundamental Chemistry, Kyoto Univ., Japan, for his assistance on the enzyme alignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf S. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, A.S. Microbial l-methioninase: production, molecular characterization, and therapeutic applications. Appl Microbiol Biotechnol 86, 445–467 (2010). https://doi.org/10.1007/s00253-009-2303-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2303-2

Keywords

Navigation