Skip to main content
Log in

DNA polymerases and carcinogenesis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

There are many various chromosomal and gene mutations in human cancer cells. The total mutation rate in normal human cells is 2·10−7 mutations/gene/division. From 6 to 12 carcinogenic mutations can arise by the end of the life, and these can affect the structure of ∼150 protooncogenes and genes encoding suppressors of tumor growth. However, this does not explain the tens and hundreds of thousands of mutations detectable in cancer cells. Mutation is any change of nucleotide sequence in cellular DNA. Gene mutations are mainly consequences of errors of DNA polymerases, especially of their specialized fraction (inaccurate DNA polymerases β, ζ, η, θ, ι, κ, λ, μ, σ, ν, Rev1, and terminal deoxynucleotidyl transferase, and only polymerases θ and σ manifest a slight 3′-exonuclease activity) and also consequences of a decrease in the rate of repair of these errors. Inaccurate specialized human polymerases are able to synthesize DNA opposite lesions in the DNA template, but their accuracy is especially low during synthesis on undamaged DNA. In the present review fundamental features of such polymerases are considered. DNA synthesis stops in the area of its lesion, but this block is overcome due to activities of inaccurate specialized DNA polymerases. After the lesion is bypassed, DNA synthesis is switched to accurate polymerases α, δ, ɛ, or γ. Mechanisms of direct and reverse switches of DNA polymerases as well as their modifications during carcinogenesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAF:

N-2-acetylaminofluorene

AP sites:

apurine and apyrimidine sites

CE:

corrective 3′→5′-exonucleases

PCNA:

proliferating cell nuclear antigen

sumo:

small ubiquitin-like modifier

TdT:

terminal deoxynucleotidyl transferase

References

  1. Hubscher, U., Maga, G., and Spadari, S. (2002) Annu. Rev. Biochem., 71, 133–163.

    Article  PubMed  CAS  Google Scholar 

  2. Friedberg, E. C., Wagner, R., and Radman, M. (2002) Science, 296, 1627–1630.

    Article  PubMed  CAS  Google Scholar 

  3. Bollum, F. D. (1978) Adv. Enzymol., 47, 347–374.

    PubMed  CAS  Google Scholar 

  4. Chang, M. S. C. (1976) Science, 191, 1183–1185.

    Article  PubMed  CAS  Google Scholar 

  5. Lawrence, C. W., and Hinkle, D. S. (1996) Cancer Surveys, 28, 21–31.

    PubMed  CAS  Google Scholar 

  6. Ramadan, K., Shevelev, I. V., Maga, G., and Hubscher, U. (2002) J. Biol. Chem., 277, 18454–18458.

    Article  PubMed  CAS  Google Scholar 

  7. Yoshida, S., Masaki, S., Nakamura, H., and Morita, T. (1981) Biochim. Biophys. Acta, 65, 324–333.

    Google Scholar 

  8. Kleiner, N. E., Kravetskaya, T. P., Legina, O. K., Naryzhny, S. N., and Krutyakov, V. M. (1988) Mol. Biol. (Moscow), 22, 498–505.

    CAS  Google Scholar 

  9. Krutyakov, V. M., Belyakova, N. V., Kravetskaya, T. P., and Naryzhny, S. N. (1985) Izv. Akad. Nauk SSSR, Ser. Biol., 4, 562–571.

    Google Scholar 

  10. Prasad, R., Beard, W. A., and Wilson, S. H. (1994) J. Biol. Chem., 269, 18096–18101.

    PubMed  CAS  Google Scholar 

  11. Sobol, R. W., Prasad, R., Evenski, A., Baker, A., and Yang, X. P. (2000) Nature, 405, 807–810.

    Article  PubMed  CAS  Google Scholar 

  12. Sugo, N., Aratani, Y., Nagashima, Y., Kubota, Y., and Koyama, H. (2000) EMBO J., 19, 1397–1404.

    Article  PubMed  CAS  Google Scholar 

  13. Kunkel, T. A. (1992) BioEssays, 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  14. Matsuda, T., Vande Berg, B. J., Bebenek, K., Osherhoff, W. P., Wilson, S. H., and Kunkel, T. A. (2003) J. Biol. Chem., 278, 25947–25951.

    Article  PubMed  CAS  Google Scholar 

  15. Servant, L., Casaux, C., Bieth, A., Iwai, S., Hanaoka, F., and Hoffmann, J. S. (2002) J. Biol. Chem., 277, 50046–50053.

    Article  PubMed  CAS  Google Scholar 

  16. Hubscher, U., Nasheuer, H. P., and Syvaoja, J. E. (2000) Trends Biochem. Sci., 25, 143–147.

    Article  PubMed  CAS  Google Scholar 

  17. Hoffmann, J. S., Pillaire, M. J., Maga, G., Podust, V., Hubscher, U., and Villani, G. (1995) Proc. Natl. Acad. Sci. USA, 92, 5356–5360.

    Article  PubMed  CAS  Google Scholar 

  18. Singh, J., Su, L., and Snow, E. T. (1996) J. Biol. Chem., 271, 28391–28398.

    Article  PubMed  CAS  Google Scholar 

  19. Masutani, C., Kusumoto, R., and Yamada, A. (1999) Nature, 399, 700–704.

    Article  PubMed  CAS  Google Scholar 

  20. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F., and Kunkel, T. A. (2000) Nature, 404, 1011–1013.

    Article  PubMed  CAS  Google Scholar 

  21. Masutani, C., Araki, M., Yamada, A., Kasumoto, R., Nogimori, T., Maekawa, T., Iwai, S., and Hanaoka, F. (1999) EMBO J., 18, 3491–3501.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson, R. E., Prakash, S., and Prakash, L. (1999) Science, 283, 1001–1004.

    Article  PubMed  CAS  Google Scholar 

  23. Haracska, L., Prakash, S., and Prakash, L. (2000) Mol. Cell Biol., 20, 8001–8007.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, Y., Yuan, F., Wu, X., Wang, M., Rechcoblit, O., Taylor, J. S., Geacintov, N. E., and Wang, Z. (2000) Nucleic Acids Res., 28, 4138–4146.

    Article  PubMed  CAS  Google Scholar 

  25. Yuan, F., Zhang, Y., Rajpal, D. K., Wu, X., Guo, D., Wang, M., Taylor, J. S., and Wang, Z. (2000) J. Biol. Chem., 275, 8233–8239.

    Article  PubMed  CAS  Google Scholar 

  26. Kokoska, R. J., McCulloch, S. D., and Kunkel, T. A. (2003) J. Biol. Chem., 278, 50537–50545.

    Article  PubMed  CAS  Google Scholar 

  27. Kannouche, P., Fernandez de Henestrosa, A. R., Coull, B., Vidal, A. E., Gray, C., Zicha, D., Woodhate, R., and Lehman, A. R. (2002) EMBO J., 21, 6246–6256.

    Article  PubMed  CAS  Google Scholar 

  28. Kannouche, P., Broughton, C. C., Volker, M., Hanaoka, L. M., Millenders, L. H., and Lehman, A. R. (2001) Genes Dev., 15, 158–172.

    Article  PubMed  CAS  Google Scholar 

  29. Ohashi, E., Ogi, T., Kusomoto, R., Iwai, S., Masutani, C., Hanaoka, F., and Ohmori, H. (2000) Genes Dev., 14, 1589–1594.

    PubMed  CAS  Google Scholar 

  30. Zhang, F., Yuan, H., Xin, H., Wu, H., Rajpal, D. K., Yang, D., and Wang, Z. (2000) Nucleic Acids Res., 28, 4147–4156.

    Article  PubMed  CAS  Google Scholar 

  31. Ohashi, E., Bebenek, K., Matsuda, T., Feaver, W. J., Gerlach, V. L., Friedberg, E. C., Ohmori, H., and Kunkel, T. A. (2000) J. Biol. Chem., 275, 39678–39684.

    Article  PubMed  CAS  Google Scholar 

  32. Yasui, M., Suzuki, N., Miller, H., Matsuda, T., Matsui, S., and Shibutani, S. (2004) J. Mol. Biol., 344, 665–674.

    Article  PubMed  CAS  Google Scholar 

  33. Tissier, A., McDonald, J. P., Frank, E. G., and Woodgate, R. (2000) Genes Dev., 14, 1642–1650.

    PubMed  CAS  Google Scholar 

  34. Zhang, Y., Yuan, F., Wu, X., Taylor, J. S., and Wang, Z. (2001) Nucleic Acids Res., 29, 928–935.

    Article  PubMed  CAS  Google Scholar 

  35. Tissier, A., Frank, E. G., McDonald, J. P., Iwai, S., Hanaoka, F., and Woodgate, R. (2000) EMBO J., 19, 5259–5266.

    Article  PubMed  CAS  Google Scholar 

  36. Bebenek, K., Tissier, A., Frank, E. G., McDonald, J. P., Prasad, R., Wilson, S. H., Woodgate, R., and Kunkel, T. A. (2001) Science, 291, 2156–2159.

    Article  PubMed  CAS  Google Scholar 

  37. Yang, J., Chen, Z., Liu, Y., Hickey, R. J., and Malkas, L. H. (2004) Cancer Res., 64, 5597–5607.

    Article  PubMed  CAS  Google Scholar 

  38. Wabl, M., Burrows, P. D., von Gabain, A., and Steinberg, C. (1985) Proc. Natl. Acad. Sci. USA, 82, 479–482.

    Article  PubMed  CAS  Google Scholar 

  39. Drake, J. W., Charlesworth, B., Charlesworth, D., and Crow, J. F. (1998) Genetics, 148, 1667–1686.

    PubMed  CAS  Google Scholar 

  40. Krutyakov, V. M. (2004) Mol. Biol. (Moscow), 38, 823–833.

    Google Scholar 

  41. Fijalkowska, I. J., and Schaaper, R. M. (1996) Proc. Natl. Acad. Sci. USA, 93, 2856–2861.

    Article  PubMed  CAS  Google Scholar 

  42. Maga, G., and Hubscher, U. (2003) J. Cell Sci., 116, 3051–3060.

    Article  PubMed  CAS  Google Scholar 

  43. Friedberg, E. C., Lehmann, A. R., and Fuchs, P. P. (2005) Mol. Cell, 18, 499–505.

    Article  PubMed  CAS  Google Scholar 

  44. Stelter, P., and Ulrich, H. D. (2003) Nature, 425, 188–191.

    Article  PubMed  CAS  Google Scholar 

  45. Yeh, E. T. (2009) J. Biol. Chem., 284, 8223–8227.

    Article  PubMed  CAS  Google Scholar 

  46. Kim, K. L., and Baek, S. H. (2006) Mol. Cells, 22, 247–253.

    PubMed  CAS  Google Scholar 

  47. Kim, K. L., and Baek, S. H. (2009) Int. Rev. Cell Mol. Biol., 273, 265–311.

    Article  PubMed  CAS  Google Scholar 

  48. Baek, S. H. (2006) Cell Cycle, 5, 1492–1495.

    PubMed  CAS  Google Scholar 

  49. McCulloch, S. D., Kokoska, R. J., Chilkova, O., Welch, C. M., Johansson, E., Burgers, P. M., and Kunkel, T. A. (2004) Nucleic Acids Res., 32, 4665–4675.

    Article  PubMed  CAS  Google Scholar 

  50. Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., Sherry, S., Mullikin, J. C., Mortimore, B. J., Willey, D. L., Hunt, S. E., Cole, C. G., Coggill, P. C., Rice, C. M., Ning, Z., Rogers, J., Bentley, D. R., Kwok, P. Y., Mardis, E. R., Yeh, R. T., Schultz, B., Cook, L., Davenport, R., Dante, M., Fulton, L., Hillier, L., Waterston, R. H., McPherson, J. D., Gilman, B., Schaffner, S., van Etten, W. J., Reich, D., Higgins, J., Daly, M. J., Blumenstiel, B., Baldwin, J., Stange-Thomann, N., Zody, M. C., Linton, L., Lander, E. S., and Altshuler, D. (2001) Nature, 409, 928–933.

    Article  PubMed  CAS  Google Scholar 

  51. Loeb, L. A. (2001) Cancer Res., 61, 3230–3239.

    PubMed  CAS  Google Scholar 

  52. Bielas, J. H., and Loeb, L. A. (2005) Environ. Mol. Mutagen, 45, 206–213.

    Article  PubMed  CAS  Google Scholar 

  53. Jonczyk, P., Fijalkowska, Y., and Ciesla, Z. (1988) Proc. Natl. Acad. Sci. USA, 85, 9124–9127.

    Article  PubMed  CAS  Google Scholar 

  54. Ciesla, Z., Jonczyk, P., and Fijalkowska, Y. (1990) Mol. Gen. Genet., 221, 251–255.

    Article  PubMed  CAS  Google Scholar 

  55. Hoss, M., Robins, P., Naven, T. J., Pappin, D. J., Sgouros, J., and Lingatl, T. (1999) EMBO J., 18, 3868–3875.

    Article  PubMed  CAS  Google Scholar 

  56. Mazur, D. R., and Perrino, F. W. (1999) J. Biol. Chem., 247, 19655–19660.

    Article  Google Scholar 

  57. Krutyakov, V. M. (1980) in DNA Damage and Repair (Gaziev, A. I., ed.) [in Russian], Research Center of Biological Studies, Academy of Sciences of the USSR, Pushchino, pp. 95–107.

    Google Scholar 

  58. Krutyakov, V. M. (1985) Usp. Sovrem. Biol., 100, 191–202.

    CAS  Google Scholar 

  59. Wang, L., Patel, U., Gosh, L., and Banerjee, S. (1992) Cancer Res., 52, 4824–4827.

    PubMed  CAS  Google Scholar 

  60. Dobashi, Y., Shuin, T., Tsuruga, H., Uemura, H., and Kubota, Y. (1994) Cancer Res., 54, 2827–2829.

    PubMed  CAS  Google Scholar 

  61. Matsuzaki, J., Dobashi, Y., Miyamoto, H., Ikeda, I., Fujiami, K., Shuin, T., and Kubota, Y. (1996) Mol. Carcinogenesis, 15, 38–43.

    Article  CAS  Google Scholar 

  62. Canitrot, Y., Laurent, G., Astarie-Dequeker, C., Bordier, C., Cazaux, C., and Hoffmann, J. S. (2006) Anticancer Res., 26, 523–525.

    PubMed  CAS  Google Scholar 

  63. Lang, T., Maitra, M., Starcevic, D., Li, S. X., and Sweasy, J. B. (2004) Proc. Natl. Acad. Sci. USA, 101, 6074–6079.

    Article  PubMed  CAS  Google Scholar 

  64. Sweasy, J. B., Lang, T., Starcevic, D., Sun, K. W., Lai, C. C., Dimaio, D., and Dalal, S. (2005) Proc. Natl. Acad. Sci. USA, 102, 14350–14355.

    Article  PubMed  CAS  Google Scholar 

  65. Dalal, S., Hile, S., Eckert, K. A., Sun, K. W., Starcevic, D., and Sweasy, J. B. (2005) Biochemistry, 44, 15664–15673.

    Article  PubMed  CAS  Google Scholar 

  66. Starcevic, D., Dalal, S., and Sweasy, J. B. (2004) Cell Cycle, 3, 998–1001.

    PubMed  CAS  Google Scholar 

  67. Chan, K. K., Zhang, Q. M., and Dianov, G. L. (2006) Mutagenesis, 21, 173–178.

    Article  PubMed  CAS  Google Scholar 

  68. Goldsby, R. E., Hays, L. E., Chen, X., Olmsted, E. A., Slayton, W. B., Spangrude, G. J., and Preston, B. D. (2002) Proc. Natl. Acad. Sci. USA, 99, 15560–15565.

    Article  PubMed  CAS  Google Scholar 

  69. Holmquist, G. P. (1998) Mutat. Res., 400, 59–68.

    PubMed  CAS  Google Scholar 

  70. Buermeyer, A. B., Deschenes, S. M., Baker, S. M., and Liskaya, R. M. (1999) Ann. Rev. Genet., 33, 553–564.

    Google Scholar 

  71. Belyakova, N. V., Kleiner, N. E., Kravetskaya, T. P., Legina, O. K., Naryzhny, S. N., Perrino, F. W., Shevelev, I. V., and Krutyakov, V. M. (1993) Eur. J. Biochem., 217, 493–500.

    Article  PubMed  CAS  Google Scholar 

  72. Belyakova, N. V., Kravetskaya, T. P., Legina, O. K., Ronzhina, N. L., Shevelev, I. V., and Krutyakov, V. M. (2007) Izv. Ros. Akad. Nauk, Ser. Biol., No. 5, 517–523.

  73. Shevelev, I. V., Belyakova, N. V., Kravetskaya, T. P., and Krutyakov, V. M. (2002) Mol. Biol. (Moscow), 36, 1054–1061.

    Google Scholar 

  74. Sarasin, A. (2003) Mutat. Res., 544, 99–106.

    Article  PubMed  CAS  Google Scholar 

  75. Nowell, P. C. (1976) Science, 194, 23–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Kravetskaya.

Additional information

Original Russian Text © V. M. Krutyakov, T. P. Kravetskaya, 2010, published in Biokhimiya, 2010, Vol. 75, No. 8, pp. 1055–1061.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutyakov, V.M., Kravetskaya, T.P. DNA polymerases and carcinogenesis. Biochemistry Moscow 75, 959–964 (2010). https://doi.org/10.1134/S000629791008002X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791008002X

Key words

Navigation