Skip to main content
Log in

Production of hydrogen peroxide and nitric oxide following introduction of nitrate and nitrite into wheat leaf apoplast

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Infiltration of wheat (Triticum aestivum L.) seedling leaves with excess of nitrate, nitrite, or the NO donor sodium nitroprusside leads to increase both in content of hydroperoxide and activity of peroxidase and decrease in superoxide dismutase (SOD) activity in the leaf apoplast. Polymorphism of extracellular peroxidases and the presence of Cu/Zn-SOD have been shown in apoplast. Using an ESR assay, a considerable increase in the level of NO following infiltration of leaf tissues with nitrite has been demonstrated. These data suggest development of both oxidative and nitrosative stresses in leaves exposed to high levels of nitrate or nitrite. A possible interplay of NO and reactive oxygen species in plant cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DETC:

sodium diethyldithiocarbamate

NR:

nitrate reductase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  1. Wendehenne, D., Pugin, A., Klessing, D. F., and Durner, J. (2001) Trends Plant Sci., 6, 177–183.

    Article  CAS  PubMed  Google Scholar 

  2. Rakhmatullina, D. F., Gordon, L. Kh., Alyab’ev, A. Yu., Ogorodnikova, T. I., Loseva, N. L., and Obynochnyi, A. A. (2009) Dokl. Ros. Akad. Nauk, 424, 283–285.

    Google Scholar 

  3. Beligni, M. V., and Lamattina, L. (1999) Nitric Oxide, 3, 199–208.

    Article  CAS  PubMed  Google Scholar 

  4. Tian, X. R., and Lei, Y. B. (2007) Rus. J. Plant Physiol., 54, 676–682.

    Article  CAS  Google Scholar 

  5. Wilson, I. D., Neill, S. J., and Hancock, J. T. (2008) Plant Cell Environ., 31, 622–631.

    Article  CAS  PubMed  Google Scholar 

  6. Dubovskaya, L. V., Kolesneva, E. V., Knyazev, D. M., and Volotovskii, I. D. (2007) Rus. J. Plant Physiol., 54, 755–762.

    Article  CAS  Google Scholar 

  7. Dani, V., Simon, W. J., Duranti, M., and Croy, R. R. (2005) Proteomics, 5, 737–745.

    Article  CAS  PubMed  Google Scholar 

  8. Diaz-Vivancos, P., Rubio, M., Mesonero, V., Perago, P. M., Ros Barcelo, A., Marinez-Gomez, P., and Hernandez, J. A. (2006) J. Exp. Bot., 57, 3813–3824.

    Article  CAS  PubMed  Google Scholar 

  9. Vanin, A. F., Mordvintcev, P. I., and Kleshchev, A. L. (1984) Stud. Biophys., 107, 135–143.

    Google Scholar 

  10. Ingram, D. J. E. (1969) Biological and Biochemical Applications of Electron Spin Resonance, Plenum Press, N.Y.

    Google Scholar 

  11. Gay, C., and Gebicki, J. M. (2000) Anal. Biochem., 284, 217–220.

    Article  CAS  PubMed  Google Scholar 

  12. Giannopolitis, C. N., and Ries, S. K. (1977) Plant Physiol., 59, 309–314.

    Article  CAS  PubMed  Google Scholar 

  13. Boyarkin, A. N. (1952) Biokhimiya, 16, 352–357.

    Google Scholar 

  14. Kochetov, G. A. (1980) A Practical Guide to Enzymology [in Russian], Vysshaya Shkola, Moscow.

    Google Scholar 

  15. Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  16. Laemmli, N. K. (1970) Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  17. Darbre, A. (ed.) (1986) Practical Protein Chemistry. A Handbook, Wiley, N.Y.

    Google Scholar 

  18. Khavkin, E. Ye., and Zabrodina, M. V. (1995) Fiziol. Rast., 42, 281–289.

    Google Scholar 

  19. Dean, J. V., and Harper, J. E. (1988) Plant Physiol., 88, 389–395.

    Article  CAS  PubMed  Google Scholar 

  20. Crawford, N. M. (2006) J. Exp. Bot., 57, 471–478.

    Article  CAS  PubMed  Google Scholar 

  21. Bright, J., Desican, R., Hancock, J. T., Weir, I. S., and Neill, S. J. (2006) Plant J., 45, 113–122.

    Article  CAS  PubMed  Google Scholar 

  22. Vanin, A. F., Svistunenko, D. A., Mikoyan, V. D., Serezhenkov, V. A., Fryer, M. J., Baker, N. R., and Cooper, C. E. (2004) J. Biol. Chem., 23, 24100–24107.

    Article  Google Scholar 

  23. Yamasaki, H., Sakihama, Y., and Takahashi, S. (1999) Trends Plant Sci., 4, 128–129.

    Article  PubMed  Google Scholar 

  24. Jasid, S., Simontacchi, M., Bartoli, C. G., and Puntarulo, S. (2006) Plant Physiol., 142, 1246–1255.

    Article  CAS  PubMed  Google Scholar 

  25. Stohr, C., and Stremlau, S. (2006) J. Exp. Bot., 57, 463–470.

    Article  PubMed  Google Scholar 

  26. Planchet, E., Jagadis Gupta, K., Sonoda, M., and Kaiser, W. M. (2005) Plant J., 41, 732–743.

    Article  CAS  PubMed  Google Scholar 

  27. Bentke, P. C., Badger, M. R., and Jones, R. L. (2004) Plant Cell, 16, 332–341.

    Article  Google Scholar 

  28. Delledonne, M. (2005) Curr. Opin. Plant Biol., 8, 390–396.

    Article  CAS  PubMed  Google Scholar 

  29. Millar, T. M., Stevens, C. R., Benjamin, N., Eisenthal, R., Harrison, R., and Blake, D. R. (1998) FEBS Lett., 427, 225–228.

    Article  CAS  PubMed  Google Scholar 

  30. He, J. M., Xu, H., She, X. P., Song, X. G., and Zhao, W. M. (2005) Funct. Plant Biol., 32, 237–247.

    Article  CAS  Google Scholar 

  31. She, X. P., Song, X. G., and He, J. M. (2004) Acta Bot. Sinica, 46, 1292–1300.

    CAS  Google Scholar 

  32. Zhou, B., Guo, Z., Xing, J., and Huang, B. (2005) J. Exp. Bot., 56, 3223–3228.

    Article  CAS  PubMed  Google Scholar 

  33. Neill, S., Barros, R., Bright, J., Desican, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D., and Wilson, I. (2008) J. Exp. Bot., 59, 165–176.

    Article  CAS  PubMed  Google Scholar 

  34. Shapiro, A. D. (2005) Vitam. Horm., 72, 339–398.

    Article  CAS  PubMed  Google Scholar 

  35. Lum, H. K., Butt, Y. K. C., and Lo, S. C. L. (2002) Nitric Oxide Biol. Chem., 6, 205–213.

    Article  CAS  Google Scholar 

  36. Neill, S. J., Desican, R., and Hancock, J. T. (2003) New Phytologist, 159, 11–35.

    Article  CAS  Google Scholar 

  37. Mittler, R. (2002) Trends Plant Sci., 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  38. Santos, W. G. D., Pacheco, I., Liu, M. Y., Teixeira, M., Xavier, A. V., and Le Gall, J. (2000) J. Bacteriol., 182, 796–804.

    Article  PubMed  Google Scholar 

  39. Ogawa, K., Kanematsu, S., and Asada, K. (1996) Plant Cell Physiol., 37, 790–799.

    CAS  Google Scholar 

  40. Kasai, T., Suzuki, T., Ono, K., Ogawa, K., Inagaki, Y., Ichinose, Y., Toyoda, K., and Shiraishi, T. (2006) J. Gen. Plant Pathol., 72, 265–272.

    Article  CAS  Google Scholar 

  41. Karpinska, B., Karlsson, M., Schinkel, H., Streller, S., Suss, K. H., Melzer, M., and Wingsle, G. (2001) Plant Physiol., 126, 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  42. Kim, H. J., Kato, N., Kim, S., and Triplett, B. (2008) Planta, 228, 281–292.

    Article  CAS  PubMed  Google Scholar 

  43. Alsher, R. G., Erturk, N., and Heath, L. S. (2002) J. Exp. Bot., 53, 1331–1341.

    Article  Google Scholar 

  44. Clare, D. A., Rabinowitch, H. D., and Fridovich, I. (1984) Arch. Biochem. Biophys., 231, 158–163.

    Article  CAS  PubMed  Google Scholar 

  45. Bayir, H., Kagan, V. E., Clark, R. S., Janesko-Feldman, K., Rafikov, R., Huang, Z., Zhang, X., Vagni, V., Billiar, T. R., and Kochanek, P. M. (2007) J. Neurochem., 101, 168–181.

    Article  CAS  PubMed  Google Scholar 

  46. Costa, V. M., Amorim, M. A., Quintanilha, A., and Moradas-Ferreira, P. (2002) Free Radic. Biol. Med., 33, 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  47. Cohen, C., Martinez, M., and Hochstein, P. (1964) Biochemistry, 3, 901–903.

    Article  CAS  PubMed  Google Scholar 

  48. Titov, V. Yu., Petrenko, Yu. M., and Vanin, A. F. (2008) Biochemistry (Moscow), 73, 92–96.

    CAS  Google Scholar 

  49. Young, L., and Siegel, L. (1988) Biochemistry, 27, 2790–2800.

    Article  CAS  PubMed  Google Scholar 

  50. Mohazzab H. K., Fayngersh, R. P., and Wolin, M. S. (1996) Am. J. Physiol., 271, H1900–H1906.

    Google Scholar 

  51. Minibaeva, F. V., and Gordon, L. Kh. (2003) Rus. J. Plant Physiol., 50, 411–416.

    Article  CAS  Google Scholar 

  52. Ischiropoulos, H., Beers, H. F., and Ohnishi, S. T. (1996) J. Clin. Invest., 97, 2260–2267.

    Article  CAS  PubMed  Google Scholar 

  53. Lips, S. H. (1997) Rus. J. Plant Physiol., 44, 421–431.

    CAS  Google Scholar 

  54. Blee, K. A., Jupe, S. C., Richard, G., Zimmerlin, A., Davis, D. A., and Bolwell, G. P. (2001) Plant Mol. Biol., 47, 607–620.

    Article  CAS  PubMed  Google Scholar 

  55. Bolwell, G. P., Butt, V. S., Davis, D. A., and Zimmerlin, A. (1995) Free Radic Res. Commun., 23, 517–532.

    Article  CAS  Google Scholar 

  56. Kuzin, M. I., and Kostyuchenko, B. M. (1981) in Wounds and Wound Infection [in Russian], Meditsina, Moscow, pp. 141–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Maksyutova.

Additional information

Original Russian Text © L. V. Viktorova, N. N. Maksyutova, T. V. Trifonova, V. V. Andrianov, 2010, published in Biokhimiya, 2010, Vol. 75, No. 1, pp. 117–124.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viktorova, L.V., Maksyutova, N.N., Trifonova, T.V. et al. Production of hydrogen peroxide and nitric oxide following introduction of nitrate and nitrite into wheat leaf apoplast. Biochemistry Moscow 75, 95–100 (2010). https://doi.org/10.1134/S0006297910010128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910010128

Key words

Navigation