Skip to main content
Log in

Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this work, high ΔμH+-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K m for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K m value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH+ for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH+ might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH+ could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DCCD:

N,N′-dicyclohexylcarbodiimide

DCPIP:

dichlorophenol indophenol

FAD:

flavin adenine dinucleotide

PMS:

phenazine methosulfate

QFR:

quinol:fumarate oxidoreductase

SQR:

succinate:quinone oxidoreductase

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

References

  1. Hagerhall, C. (1997) Biochim. Biophys. Acta, 1320, 107–141.

    Article  CAS  PubMed  Google Scholar 

  2. Lancaster, C. R. D. (2002) Biochim. Biophys. Acta, 1553, 1–6.

    Article  CAS  PubMed  Google Scholar 

  3. Horsefield, R., Iwata, S., and Byrne, B. (2004) Curr. Protein Pept. Sci., 5, 107–118.

    Article  CAS  PubMed  Google Scholar 

  4. Cecchini, G., Schroder, I., Gunsalus, R. P., and Maklashina, E. (2002) Biochim. Biophys. Acta, 1553, 140–157.

    Article  CAS  PubMed  Google Scholar 

  5. Lemma, E., Hagerholl, C., Geisler, V., Brandt, U., von Jagow, G., and Kroger, A. (1991) Biochim. Biophys. Acta, 1059, 281–285.

    Article  CAS  PubMed  Google Scholar 

  6. Maklashina, E., Berthold, D. A., and Cecchini, G. (1998) J. Bacteriol., 180, 5989–5996.

    CAS  PubMed  Google Scholar 

  7. Lemos, R. S., Fernandes, A. S., Pereira, M. M., Gomes, C. M., and Teixeira, M. (2002) Biochim. Biophys. Acta, 1553, 158–170.

    Article  CAS  PubMed  Google Scholar 

  8. Hagerhall, C., Aasa, R., von Wachenfeldt, C., and Hederstedt, L. (1992) Biochemistry, 31, 7411–7421.

    Article  CAS  PubMed  Google Scholar 

  9. Hagerhall, C., Friden, H., Aasa, R., and Hederstedt, L. (1995) Biochemistry, 34, 11080–11089.

    Article  CAS  PubMed  Google Scholar 

  10. Christenson, A., Gustavsson, T., Gorton, L., and Hagerhall, C. (2008) Biochim. Biophys. Acta, 1777, 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  11. Matsson, M., Tolstoy, D., Aasa, R., and Hederstedt, L. (2000) Biochemistry, 39, 8617–8624.

    Article  CAS  PubMed  Google Scholar 

  12. Smirnova, I. A., Hagerhall, C., Konstantinov, A. A., and Hederstedt, L. (1995) FEBS Lett., 359, 23–26.

    Article  CAS  PubMed  Google Scholar 

  13. Lancaster, C. R. D., Kroger, A., Auer, M., and Michel, H. (1999) Nature, 402, 377–385.

    Article  CAS  PubMed  Google Scholar 

  14. Collins, M. D., and Jones, D. (1981) Microbiol. Rev., 45, 316–354.

    CAS  PubMed  Google Scholar 

  15. Clark, W. M. (1960) in Oxidation-Reduction Potentials of Organic Systems, Williams and Wilkins Co., Baltimore, p. 506.

    Google Scholar 

  16. Thauer, R. K., Jungermann, K., and Decker, K. (1977) Bacteriol. Rev., 41, 100–180.

    CAS  PubMed  Google Scholar 

  17. Lardy, H. A., and Wellman, H. (1952) J. Biol. Chem., 195, 215–224.

    CAS  PubMed  Google Scholar 

  18. Hatefi, Y. (1985) Annu. Rev. Biochem., 54, 1015–1069.

    Article  CAS  PubMed  Google Scholar 

  19. Barsky, E. L., Nazarenko, A. V., Samuilov, V. D., and Khakimov, S. A. (1989) Biol. Membr. (Moscow), 6, 720–724.

    Google Scholar 

  20. Lemma, E., Unden, G., and Kroger, A. (1990) Arch. Microbiol., 155, 62–67.

    Article  CAS  PubMed  Google Scholar 

  21. Samuilov, V. D., and Khakimov, S. A. (1991) Biokhimiya, 56, 1209–1214.

    CAS  Google Scholar 

  22. Azarkina, N., and Konstantinov, A. A. (2002) J. Bacteriol., 184, 5339–5347.

    Article  CAS  PubMed  Google Scholar 

  23. Hedersted, L. (2002) Biochim. Biophys. Acta, 1553, 74–83.

    Article  Google Scholar 

  24. Schirawski, J., and Unden, G. (1998) Eur. J. Biochem., 257, 210–215.

    Article  CAS  PubMed  Google Scholar 

  25. Schnorpfeil, M., Janausch, I. G., Biel, S., Kroger, A., and Unden, G. (2001) Eur. J. Biochem., 268, 3069–3074.

    Article  CAS  PubMed  Google Scholar 

  26. Madej, G. M., Nasiri, H. R., Hilgendorff, N. S., Schwalbe, H., Unden, G., and Lancaster, C. R. D. (2006) Biochemistry, 45, 15049–15055.

    Article  CAS  PubMed  Google Scholar 

  27. Fernandes, A. S., Konstantinov, A. A., Teixeira, M., and Pereira, M. M. (2005) Biochem. Biophys. Res. Commun., 330, 565–570.

    Article  CAS  PubMed  Google Scholar 

  28. Lancaster, C. R. D. (2001) FEBS Lett., 504, 133–141.

    Article  CAS  PubMed  Google Scholar 

  29. Lancaster, C. R., Gross, R., Haas, A., Ritter, M., Mantele, W., Simon, J., and Kroger, A. (2000) Proc. Natl. Acad. Sci. USA, 97, 13051–13056.

    Article  CAS  PubMed  Google Scholar 

  30. Mell, H., Wellnitz, C., and Kroger, A. (1986) Biochim. Biophys. Acta, 852, 212–221.

    Article  CAS  Google Scholar 

  31. Geisler, V., Ullmann, R., and Kroger, A. (1994) Biochim. Biophys. Acta, 1184, 219–226.

    Article  CAS  Google Scholar 

  32. Lancaster, C. R. D. (2002) Biochim. Biophys. Acta, 1565, 215–231.

    Article  CAS  PubMed  Google Scholar 

  33. Haas, A. H., and Lancaster, C. R. D. (2004) Biophys. J., 87, 4298–4315.

    Article  CAS  PubMed  Google Scholar 

  34. Lancaster, C. R. D., Sauer, U. S., Gross, R., Haas, A. H., Graf, J., Schwalbe, H., Mantele, W., Simon, J., and Madej, G. (2005) Proc. Natl. Acad. Sci. USA, 102, 18860–18865.

    Article  CAS  PubMed  Google Scholar 

  35. Madej, G. M., Nasiri, H. R., Hilgendorff, N. S., Schwalbe, H., and Lancaster, C. R. D. (2006) EMBO J., 25, 4963–4970.

    Article  CAS  PubMed  Google Scholar 

  36. Winstedt, L., Yoshida, K. I., Fujita, Y., and von Wachenfeldt, C. (1998) J. Bacteriol., 180, 6571–6580.

    CAS  PubMed  Google Scholar 

  37. Hoch, J. A. (1991) Meth. Enzymol., 204, 305–320.

    Article  CAS  PubMed  Google Scholar 

  38. Moriyama, Y., Takano, T., and Ohkuma, S. (1982) J. Biochem., 92, 1333–1336.

    CAS  PubMed  Google Scholar 

  39. Apell, H. J., and Bersch, B. (1987) Biochim. Biophys. Acta, 903, 480–494.

    Article  CAS  PubMed  Google Scholar 

  40. Muntyan, M. S., Popova, I. V., Bloch, D. A., Skripnikova, E. V., and Ustiyan, V. S. (2005) Biochemistry (Moscow), 70, 137–142.

    Article  CAS  Google Scholar 

  41. Yu, J., Hederstedt, L., and Piggot, P. J. (1995) J. Bacteriol., 177, 6751–6760.

    CAS  PubMed  Google Scholar 

  42. Yu, J., and le Brun, N. E. (1998) J. Biol. Chem., 273, 8860–8866.

    Article  CAS  PubMed  Google Scholar 

  43. Fernandes, A. S., Pereira, M. M., and Teixeira, M. (2001) J. Bioenerg. Biomembr., 33, 343–352.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia, L. M., Contreras-Zentella, M. L., Jaramillo, R., Benito-Mercade, M. C., Mendoza-Hernandez, G., del Arenal, I. P., Membrillo-Hernandez, J., and Escamilla, J. E. (2008) Can. J. Microbiol., 54, 456–466.

    Article  CAS  PubMed  Google Scholar 

  45. Holmberg, C., and Rutberg, L. (1992) Mol. Microbiol., 6, 2931–2938.

    Article  CAS  PubMed  Google Scholar 

  46. Lauraeus, M., and Wikstrom, M. (1993) J. Biol. Chem., 268, 11470–11473.

    CAS  PubMed  Google Scholar 

  47. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikstrom, M. (1991) Biochemistry, 30, 3936–3942.

    Article  CAS  PubMed  Google Scholar 

  48. Guffanti, A. A., Cheng, J. B., and Krulwich, T. A. (1998) J. Biol. Chem., 273, 26447–26454.

    Article  CAS  PubMed  Google Scholar 

  49. Kajiyama, Y., Otagiri, M., Sekiguchi, J., Kosono, S., and Kudo, T. (2007) J. Bacteriol., 189, 7511–7514.

    Article  CAS  PubMed  Google Scholar 

  50. Matsushita, T., Ueda, T., and Kusaka, I. (2005) Eur. J. Biochem., 156, 95–100.

    Article  Google Scholar 

  51. Murphey, W. H., Barnaby, C., Lin, F. J., and Kaplan, N. O. (1967) J. Biol. Chem., 242, 1548–1559.

    CAS  PubMed  Google Scholar 

  52. Jin, S., de Jesus-Berrios, M., and Sonenshein, A. L. (1996) J. Bacteriol., 178, 560–563.

    CAS  PubMed  Google Scholar 

  53. Brown, L. J., MacDonald, M. J., Lehn, D. A., and Moran, S. M. (1994) J. Biol. Chem., 269, 14363–14366.

    CAS  PubMed  Google Scholar 

  54. Beleznai, Z., Szalay, L., and Jancsik, V. (1988) Eur. J. Biochem., 170, 631–636.

    Article  CAS  PubMed  Google Scholar 

  55. Tushurashvili, P. R., Gavrikova, E. V., Ledenev, A. N., and Vinogradov, A. D. (1985) Biochim. Biophys. Acta, 809, 145–159.

    Article  CAS  PubMed  Google Scholar 

  56. Vinogradov, A. D. (1986) Biokhimiya, 51, 1944–1973.

    CAS  Google Scholar 

  57. Ackrell, B. A., Kearney, E. B., and Singer, T. P. (1978) Meth. Enzymol., 53, 466–483.

    Article  CAS  PubMed  Google Scholar 

  58. Scherrer, R., and Gerhardt, P. (1973) J. Bacteriol., 114, 888–890.

    CAS  PubMed  Google Scholar 

  59. Snavely, M. D. (1990) in Metal Ions in Biological Systems (Sigel, H., and Sigel, A., eds.) CRC Press, New York, p. 156.

    Google Scholar 

  60. Weber, J., Wilke-Mounts, S., and Senior, A. E. (2002) J. Biol. Chem., 277, 18390–18396.

    Article  CAS  PubMed  Google Scholar 

  61. Franklin, M. J., Brusilow, W. S. A., and Woodbury, D. J. (2004) Biophys. J., 87, 3594–3599.

    Article  CAS  PubMed  Google Scholar 

  62. Hederstedt, L., and Heden, L. O. (1989) Biochem. J., 260, 491–497.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Konstantinov.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 1, pp. 63–77.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-162, December 20, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azarkina, N.V., Konstantinov, A.A. Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase. Biochemistry Moscow 75, 50–62 (2010). https://doi.org/10.1134/S0006297910010074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910010074

Key words

Navigation