Skip to main content
Log in

Molecular mechanisms of imidazole and benzene ring binding in proteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Aromatic bonds of amino acid radicals play an important role in arrangement of protein primary structure. Previously, the existence of a number of preferable conformations of aromatic dimers was shown theoretically and experimentally, the best known of which are parallel-displaced and perpendicular T conformations. To reveal principles that define preference of various conformations for His-His and Phe-His dimers, non-empirical quantum-chemical calculations of diimidazole and benzene-imidazole were carried out. Calculations were performed using the 6-31G** basis with account for electronic correlations in frames of MP2 and MP4 methods of perturbation theory. Comparative analysis of energetic and geometric parameters of the systems points to the preference of stacking contact or classical hydrogen bond in diimidazole. On the contrary, T conformation is maximally advantageous for benzene-imidazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MP2:

Meller-Plesset method of second order perturbation theory

b:

benzene-imidazole

a:

imidazole dimer

0:

the initial dimer conformation

References

  1. Burley, S. K., and Petsko, G. A. (1985) Science, 229, 23–28.

    Article  PubMed  CAS  Google Scholar 

  2. Bhattacharyya, R., Samanta, U., and Chakrabrti, P. (2002) Prot. Eng., 15, 91–100.

    Article  CAS  Google Scholar 

  3. Waters, M. L. (2002) Curr. Opin. Cell. Biol., 6, 736–741.

    CAS  Google Scholar 

  4. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., and Tanabe, K. (2002) J. Am. Chem. Soc., 124, 104–112.

    Article  PubMed  CAS  Google Scholar 

  5. Armstrong, K. M., Fairman, R., and Baldwin, R. L. (1993) J. Mol. Biol., 230, 284–291.

    Article  PubMed  CAS  Google Scholar 

  6. McGaughey, G. B., Gagne, M., and Rappe, A. K. (1996) J. Biol. Chem., 273, 15458–15463.

    Article  Google Scholar 

  7. Spirko, V., Engkvist, O., Soldan, P., Selzle, H. L., Schlag, E. W., and Hobza, P. (1999) J. Chem. Phys., 111, 572–582.

    Article  CAS  Google Scholar 

  8. Sinnokrot, M. O., Valeev, E. F., and Sherrill, C. D. (2002) J. Am. Chem. Soc., 124, 10887–10893.

    Article  PubMed  CAS  Google Scholar 

  9. Park, Y. C., and Lee, J. S. (2006) J. Phys. Chem. A., 110, 5091–5095.

    Article  PubMed  CAS  Google Scholar 

  10. Podeszwa, R., Bukovski, R., and Szalewicz, K. (2006) J. Phys. Chem. A, 110, 10345–10359.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, E. C., Kim, D., Jurecka, P., Tarakeshwar, P., Hobza, P., and Kim, K. S. (2007) J. Phys. Chem., 111, 3446–3457.

    CAS  Google Scholar 

  12. Krause, H., Ernstberger, B., and Neusser, H. J. (1991) Chem. Phys. Lett., 184, 411–417.

    Article  CAS  Google Scholar 

  13. Grover, J. R. (1987) J. Phys. Chem., 91, 3233–3237.

    Article  CAS  Google Scholar 

  14. Tsuzuki, S., Uchimaru, T., Sugawa, K., and Mikami, M. (2002) J. Chem. Phys., 117, 11216–11221.

    Article  CAS  Google Scholar 

  15. Bhattacharyya, R., Saha, R. P., Samanta, U., and Chakrabarti, P. (2003) J. Proteome Res., 2, 255–263.

    Article  PubMed  CAS  Google Scholar 

  16. Meurisse, R., Brasseur, R., and Thomas, A. (2003) Biochim. Biophys. Acta, 1649, 85–96.

    PubMed  CAS  Google Scholar 

  17. Moller, C., and Plesset, M. S. (1934) Phys. Rev., 46, 618–625.

    Article  CAS  Google Scholar 

  18. Mishra, B. K., and Sathyamurthy, N. (2005) J. Phys. Chem., 109, 6–8.

    CAS  Google Scholar 

  19. Pedretti, A., Villa, L., and Vistoli, G. (2004) JCAM, 18, 167–173.

    CAS  Google Scholar 

  20. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., and Montgomery, J. A. (1993) J. Comput. Chem., 14, 1347–1363.

    Article  CAS  Google Scholar 

  21. Gordon, M. S. (1980) Chem. Phys. Lett., 76, 163–168.

    Article  CAS  Google Scholar 

  22. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, Jr. T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. (2003) Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA.

    Google Scholar 

  23. Humphrey, W., Dalke, A., and Schulten, K. (1996) J. Mol. Graph., 14, 33–38.

    Article  PubMed  CAS  Google Scholar 

  24. Zakharov, G. A., Savvateeva-Popova, E. V., Popov, E. V., and Shchegolev, B. F. (2008) Biophysics (Moscow), 53, 22–29.

    CAS  Google Scholar 

  25. Muller-Dethlefs, K., and Hobza, P. (2000) Chem. Rev., 100, 143–167.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Shchegolev.

Additional information

Original Russian Text © A. V. Zhuravlev, B. F. Shchegolev, E. V. Savvateeva-Popova, A. V. Popov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 8, pp. 1135–1144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, A.V., Shchegolev, B.F., Savvateeva-Popova, E.V. et al. Molecular mechanisms of imidazole and benzene ring binding in proteins. Biochemistry Moscow 74, 925–932 (2009). https://doi.org/10.1134/S000629790908015X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790908015X

Key words

Navigation