Skip to main content
Log in

Oxidative stress and formation and maintenance of root stem cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The hypothesis of L. Feldman and his coworkers, according to which a more oxidizing environment in the cells of root quiescent center results from high activity of ascorbate oxidase activated by indoleacetic acid (IAA) accumulating in these cells, is discussed. The high activity of ascorbate oxidase is responsible for lowered concentrations of the reduced form of ascorbic acid and glutathione and high content of reactive oxygen species in quiescent center cells. The oxidative stress represses proliferation of the cells. Inhibitors of IAA transport attenuate the oxidative stress, thus suggesting a role of IAA as an activator of ascorbate oxidase. Interestingly, the high concentration of IAA in dividing cap cells adjacent to the quiescent center cells did not cause retardation of cell proliferation and oxidative state in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IAA:

indoleacetic acid

NPA:

naphthyl phthalic acid

ROS:

reactive oxygen species

References

  1. Clowes, F. A. L. (1956) New Phytologist, 55, 29–35.

    Article  CAS  Google Scholar 

  2. Clowes, F. A. L. (1963) Brookhaven Symp. Biol., 16, 46–58.

    Google Scholar 

  3. Ivanov, V. B. (1974) Cellular Basics of Plant Growth [in Russian], Nauka, Moscow.

    Google Scholar 

  4. Clowes, F. A. L. (1975) The Development and Function of Plants (Torrey, J. G., and Clarkson, D. T., eds.) Academic Press, London, pp. 3–19.

    Google Scholar 

  5. Barlow, P. W. (1978) Stem Cells and Tissue Homeostasis (Lorel, B. I., Potten, C. S., and Cole, R. J., eds.) Cambridge University Press, Cambridge, pp. 87–113.

    Google Scholar 

  6. Ivanov, V. B. (2003) Rus. J. Dev. Biol., 34, 205–212.

    Article  Google Scholar 

  7. Ivanov, V. B. (2004) Rus. J. Plant Physiol., 51, 834–847.

    Article  CAS  Google Scholar 

  8. Jiang, K., and Feldman, L. J. (2005) Annu. Rev. Cell Dev. Biol., 21, 485–509.

    Article  PubMed  CAS  Google Scholar 

  9. Raju, M. V. S., Steeves, T.A., and Naylor, J. M. (1964) Can. J. Bot., 42, 1615–1628.

    Article  Google Scholar 

  10. Rodriguez-Rodriguez, J. F., Shishkova, S., Napsucialy-Mendivil, S., and Dubrovsky, J. (2003) Planta, 217, 849–857.

    Article  PubMed  CAS  Google Scholar 

  11. Clowes, F.A.L. (1984) New Phytol., 96, 13–21.

    Article  Google Scholar 

  12. Barlow, P. W., and Rathfelder, E. L. (1984) Ann. Bot., 53, 249–260.

    Google Scholar 

  13. Feldman, L. J. (1976) Planta, 128, 207–212.

    Article  Google Scholar 

  14. Ivanov, V. B., and Larina, L. P. (1983) Dokl. Akad. Nauk SSSR, 272, 1014–1017.

    Google Scholar 

  15. Clowes, F. A. L. (1963) Brookhaven Symp. Biol., 16, 46–58.

    Google Scholar 

  16. Clowes, F. A. L., and Stewart, H. E. (1967) New Phytologist, 66, 115–125.

    Article  Google Scholar 

  17. Barlow, P. W., and Rathfelder, E. L. (1985) Environ. Exp. Bot., 25, 303–314.

    Article  Google Scholar 

  18. Van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P., and Scheres, B. (1995) Nature, 378, 62–65.

    Article  PubMed  Google Scholar 

  19. Scheres, B. (2007) Nat. Rev. Mol. Cell Biol., 8, 345–354.

    Article  PubMed  CAS  Google Scholar 

  20. Sarkar, A.R., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Narajima, K., Scheres, B., Heidstra, R., and Laux, T. (2007) Nature, 446, 811–814.

    Article  PubMed  CAS  Google Scholar 

  21. Sabatini, S., Heidstra, R., Wildwater, M., and Scheres, B. (2003) Gen. Dev., 17, 354–358.

    Article  CAS  Google Scholar 

  22. Webster, P. L., and Langenhauer, H. D. (1973) Planta, 112, 91–110.

    Article  CAS  Google Scholar 

  23. Sabatini, S., Beis, D., Wolkenfelt, H., Murfelt, H., Guilfole, T., Malamy, J., Benfey, P., Leyser, O., Weisbeek, P., and Scheres, B. (1999) Cell, 99, 463–472.

    Article  PubMed  CAS  Google Scholar 

  24. Billou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005) Nature, 433, 39–44.

    Article  CAS  Google Scholar 

  25. Wildwater, M., Campiho, A., Perez-Perez, J. M., Heidstra, R., Blilou, I., Korthout, H., Chatterjee, J., Mariconti, L., Gruissem, W., and Sheres, B. (2005) Cell, 123, 1337–1349.

    Article  PubMed  CAS  Google Scholar 

  26. Kerk, N., and Feldman, L. (1995) Development, 121, 2825–2833.

    CAS  Google Scholar 

  27. Jiang, K., and Feldman, L. J. (2003) J. Plant Growth Regul., 21, 432–440.

    Article  CAS  Google Scholar 

  28. Ponce, G., Lujan, R., Campos, M. E., Reyes, A., Nieto-Satelo, J., Feldman, L., and Cassab, G. I. (2000) Planta, 211, 23–33.

    Article  PubMed  CAS  Google Scholar 

  29. Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jurgens, G., and Palme, K. (2002) Cell, 108, 661–673.

    Article  PubMed  CAS  Google Scholar 

  30. Aida, M., Vernoux, T., and Furutani, M. (2002) Development, 129, 3965–3974.

    PubMed  CAS  Google Scholar 

  31. Jiang, K., Meng, Y. L., and Feldman, L. J. (2003) Development, 130, 1429–1438.

    Article  PubMed  CAS  Google Scholar 

  32. Jiang, K., Ballinger, T., Li, D., Zhang, S., and Feldman, L. (2006) Plant Physiol., 140, 1118–1125.

    Article  PubMed  CAS  Google Scholar 

  33. Liso, R., De Tullio, M. C., Ciraci, S., Balestrini, R., La Rocca, N., Bruno, L., Chiappetta, A., Bitoni, M. B., Bonfante, P., and Arrigoni, O. (2004) J. Exp. Bot., 55, 2589–2597.

    Article  PubMed  CAS  Google Scholar 

  34. Liso, R., Innocenti, A. M., Bitonti, B. M., and Arrigoni, O. (1988) New Phytol., 110, 469–471.

    Article  CAS  Google Scholar 

  35. Smith, J., Ladi, E., Mayer-Proschel, M., and Noble, M. (2000) Proc. Natl. Acad. Sci. USA, 97, 10032–10037.

    Article  PubMed  CAS  Google Scholar 

  36. Boonstra, J., and Post, J. M. (2004) Gene, 337, 1–13.

    Article  PubMed  CAS  Google Scholar 

  37. Menon, S. G., Sarsour, E. H., Spitz, D. R., Higashikubo, R., Sturm, M., Zhang, H., and Goswami, P. C. (2003) Cancer Res., 63, 2109–2117.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Ivanov.

Additional information

Original Russian Text © V. B. Ivanov, 2007, published in Biokhimiya, 2007, Vol. 72, No. 10, pp. 1365–1370.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.B. Oxidative stress and formation and maintenance of root stem cells. Biochemistry Moscow 72, 1110–1114 (2007). https://doi.org/10.1134/S0006297907100082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907100082

Key words

Navigation