Skip to main content
Log in

Oxidative replication stress induced by long-term exposure to hydroxyurea in root meristem cells of Vicia faba

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Low concentrations of hydroxyurea, an inhibitor of DNA replication, induced oxidative and replicative stress in root apical meristem (RAM) cells of Vicia faba.

Abstract

Plant cells are constantly exposed to low-level endogenous stress factors that can affect DNA replication and lead to DNA damage. Long-term treatments of Vicia faba root apical meristems (RAMs) with HU leads to the appearance of atypical cells with intranuclear asynchrony. This rare form of abnormality was manifested by a gradual condensation of chromatin, from interphase to mitosis (so-called IM cells). Moreover, HU-treated root cells revealed abnormal chromosome structure, persisting DNA replication, and elevated levels of intracellular hydrogen peroxide (H2O2) and superoxide anion (O2∙−). Immunocytochemical studies have shown an increased number of fluorescent foci of H3 histones acetylated at lysine 56 (H3K56Ac; canonically connected with the DNA replication process). We show that continuous 3-day exposure to low concentrations (0.75 mM) of hydroxyurea (HU; an inhibitor of DNA replication) induces cellular response to reactive oxygen species and to DNA replication stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The published article includes all datasets generated or analyzed during this study. The authors will be happy to share raw data on request.

References

  • Adachi S, Minamisawa K, Okushima Y, Inagaki S, Yoshiyama K, Kondou Y, Kaminuma E, Kawashima M, Toyoda T, Matsui M, Kurihara D, Matsunaga S, Umeda M (2011) Programmed induction of endoreduplication by DNA double strand breaks in Arabidopsis. Proc Natl Acad Sci USA 108:10004–10009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aparicio OM (2013) Location, location, location: it’s all in the timing for replication origins. Genes Dev 27:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielski BHJ, Shine GG, Bajuk S (1980) Reduction of nitro blue tetrazolium by CO2- and O2- radicals. J Phys Chem 84:830–833

    Article  CAS  Google Scholar 

  • Branzei D, Foiani M (2009) The checkpoint response to replication stress. DNA Repair (amst) 8:1038–1046

    Article  CAS  PubMed  Google Scholar 

  • Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315:649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forey R, Poveda A, Sharma S, Barthe A, Padioleau I, Renard C, Lambert R, Skrzypczak M, Ginalski K, Lengronne A, Chabes A, Pardo B, Pasero P (2020) Mec1 is activated at the onset of normal S phase by low-dNTP pools impeding DNA replication. Mol Cell 78:396–410

    Article  CAS  PubMed  Google Scholar 

  • Fragkos M, Naim V (2017) Rescue from replication stress during mitosis. Cell Cycle 16:613–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fragkos M, Ganier O, Coulombe P, Méchali M (2015) DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16:360–374

    Article  CAS  PubMed  Google Scholar 

  • Han J, Zhou H, Horazdovsky B, Zhang K, Xu R-M, Zhang Z (2007) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315:653–655

    Article  CAS  PubMed  Google Scholar 

  • Hsu CL, Chong SY, Lin CY, Kao CF (2021) Histone dynamics during DNA replication stress. J Biomed Sci 28:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M-E, Facca C, Fatmi Z, Baïlle D, Bénakli S, Vernis L (2016) DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo. Sci Rep 6:29361

    Article  PubMed  PubMed Central  Google Scholar 

  • Jossen R, Bermejo R (2013) The DNA damage checkpoint response to replication stress: a Game of Forks. Front Genet 4:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Juul T, Malolepszy A, Dybkaer K, Kidmose R, Rasmussen JT, Ersen GR, Johnsen HE, Jorgensen JE, Andersen SU (2010) The in vivo toxicity of hydroxyurea depends on its direct target catalase. J Biol Chem 285:21411–21415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N (2011) Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41:543–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koç A, Wheeler LJ, Mathews CK, Merrill GF (2004) Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 279:223–230

    Article  PubMed  Google Scholar 

  • Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (basel) 4:1–32

    Article  PubMed  Google Scholar 

  • Leonard AC, Méchali M (2013) DNA replication origins. Cold Spring Harb Perspect Biol 5:a010116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu J, Li F, Murphy CS, Davidson MW, Gilbert DM (2010) G2 phase chromatin lacks determinants of replication timing. J Cell Biol 189:967–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdalou I, Lopez BS, Pasero P, Lambert SA (2014) The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 30:154–164

    Article  CAS  PubMed  Google Scholar 

  • Masumoto H, Hawke D, Kobayashi R, Verreault A (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298

    Article  CAS  PubMed  Google Scholar 

  • Nisa M-U, Huang Y, Benhamed M, Raynaud C (2019) The plant DNA damage response: signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front Plant Sci 10:653

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragu S, Droin N, Matos-Rodrigues G, Barascu A, Caillat S, Zarkovic G, Siberchicot C, Dardillac E, Gelot C, Guirouilh-Barbat J, Radicella JP, Ishchenko AA, Ravanat J-L, Solary E, Lopez BS (2023) A noncanonical response to replication stress protects genome stability through ROS production, in an adaptive manner. Cell Death Differ 30:1349–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena S, Zou L (2022) Hallmarks of DNA replication stress. Mol Cell 82:2298–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Xu Y-J (2016) The cell killing Mechanisms of hydroxyurea. Genes (basel) 7:99

    Article  CAS  PubMed  Google Scholar 

  • Técher H, Pasero P (2021) The replication stress response on a narrow path between genomic instability and inflammation. Front Cell Dev Biol 9:702584

    Article  PubMed  PubMed Central  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088–1103

    Article  CAS  PubMed  Google Scholar 

  • Vesela E, Chroma K, Turi Z, Mistrik M (2017) Common chemical inductors of replication stress: focus on cell-based studies. Biomolecules 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter J, Newport J (2000) Initiation of Eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol Cell 5:617–627

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm T, Ragu S, Magdalou I, Machon C, Dardillac E, Técher H, Guitton J, Debatisse M, Lopez BS (2016) Slow replication fork velocity of homologous recombination-defective cells results from endogenous oxidative stress. PLoS Genet 12:e1006007

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurtele H, Kaiser GS, Bacal J, St-Hilaire E, Lee E-H, Tsao S, Dorn J, Maddox P, Lisby M, Pasero P, Verreault A (2012) Histone H3 Lysine 56 acetylation and the response to DNA replication fork damage. Mol Cell Biol 32:154–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi D, Alvim Kamei CL, Cools T, Vanderauwera S, Takahashi N, Okushima Y, Eekhout T, Yoshiyama KO, Larkin J, Van Den Daele H, Conklin P, Britt A, Umeda M, De Veylder L (2014) The Arabidopsis siamese-related cyclin-dependent kinase inhibitors Smr5 and Smr7 regulate the DNA damage checkpoint in response to reactive oxygen species. Plant Cell 26:296–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Żabka A, Polit JT, Maszewski J (2010) Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins. Plant Cell Rep 29:845–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Żabka A, Polit JT, Maszewski J (2012) DNA replication stress induces deregulation of the cell cycle events in root meristems of Allium cepa. Ann Bot 110:1581–1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Żabka A, Trzaskoma P, Maszewski J (2013) Dissimilar effects of β-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa. Plant Physiol Biochem 73:282–293

    Article  PubMed  Google Scholar 

  • Żabka A, Trzaskoma P, Winnicki K, Polit JT, Chmielnicka A, Maszewski J (2015a) The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa. J Plant Physiol 174:62–70

    Article  PubMed  Google Scholar 

  • Żabka A, Winnicki K, Polit JT, Bernasinska J, Maszewski J (2015b) Localization sites of nuclear envelope SUN2-like proteins in root meristem cells of Allium cepa under hydroxyurea-induced DNA replication stress. Acta Physiol Plant 37:163

    Article  Google Scholar 

  • Żabka A, Winnicki K, Polit JT, Bernasinska-Słomczewska J, Maszewski J (2020) 5-Aminouracil and other inhibitors of DNA replication induce biphasic interphase-mitotic cells in apical root meristems of Allium cepa. Plant Cell Rep 39:1013–1028

    Article  PubMed  PubMed Central  Google Scholar 

  • Żabka A, Gocek N, Winnicki K, Szczeblewski P, Laskowski T, Polit JT (2021a) Changes in epigenetic patterns related to DNA replication in Vicia faba root meristem cells under cadmium-induced stress conditions. Cells 10:3409

    Article  PubMed  PubMed Central  Google Scholar 

  • Żabka A, Winnicki K, Polit JT, Wróblewski M, Maszewski J (2021b) Cadmium (II)-induced oxidative stress results in replication stress and epigenetic modifications in root meristem cell nuclei of Vicia faba. Cell 10:640

    Article  Google Scholar 

  • Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Work stated from the statutory funds of the University of Łódź.

Author information

Authors and Affiliations

Authors

Contributions

AŻ planned, carried out the experiments and prepared the final version of the article, JM and JTP equally contributed to acquisition of the results, NG performed the statistical analyses. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Aneta Żabka.

Ethics declarations

Conflicts of interest

The authors declare that no conflict of interest exists.

Additional information

Communicated by Zsuzsanna Kolbert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Żabka, A., Gocek, N., Polit, J.T. et al. Oxidative replication stress induced by long-term exposure to hydroxyurea in root meristem cells of Vicia faba. Plant Cell Rep 43, 87 (2024). https://doi.org/10.1007/s00299-024-03187-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03187-x

Keywords

Navigation