Skip to main content
Log in

ATP as effector of inorganic pyrophosphatase of Escherichia coli. The role of residue Lys112 in binding effectors

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It has been shown that PPi, methylenediphosphonate, and ATP act as effectors of Escherichia coli inorganic pyrophosphatase (E-PPase), and that they compete for binding at the allosteric regulatory site. On the basis of chemical modification and computer modeling of a structure of the enzyme-ATP complex, a number of amino acid residues presumably involved in binding effectors has been revealed. Mutant variants Lys112Gln, Lys112Gln/Lys148Gln, and Lys112Gln/Lys115Ala of E-PPase have been obtained, as well as a modified variant of wild type E-PPase (Adwt PPase) with a derivative of ATP chemically attached to the amino group of Lys146. Kinetic properties of these variants have been investigated and compared to the earlier described variants Lys115Ala, Arg43Gln, and Lys148Gln. Analysis of the data confirms the proposed location of an effector binding site in a cluster of positively charged amino acid residues including the side chains of Arg43, Lys146 (subunit A), Lys112, and Lys115 (subunit B). Lys112 is supposed to play a key role in forming contacts with the phosphate groups of the three studied effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E-PPase:

E. coli inorganic pyrophosphatase

Y-PPase:

S. cerevisiae inorganic pyrophosphatase

PCP:

methylenediphosphonate

Adwt PPase:

pyrophosphatase chemically modified with the dialdehyde derivative of ATP at the amino group of Lys146

References

  1. Sitnik, T. S., Vainonen, J. P., Rodina, E. V., Nazarova, T. I., Kurilova, S. A., Vorobyeva, N. N., and Avaeva, S. M. (2003) IUBMB Life, 55, 37–41.

    Article  PubMed  CAS  Google Scholar 

  2. Vainonen, J. P., Vorobyeva, N. N., Rodina, E. V., Nazarova, T. I., Kurilova, S. A., Skoblov, J. S., and Avaeva, S. M. (2005) Biochemistry (Moscow), 70, 69–78.

    CAS  Google Scholar 

  3. Sitnik, T. S., and Avaeva, S. M. (2005) Bioorg. Khim., 31, 251–258.

    PubMed  CAS  Google Scholar 

  4. Rodina, E. V., Vorobyeva, N. N., Kurilova, S. A., Belenikin, M. S., Fedorova, N. V., and Nazarova, T. I. (2007) Biochemistry (Moscow), 72, 93–99.

    CAS  Google Scholar 

  5. Oganessyan, V. Yu., Kurilova, S. A., Vorobyeva, N. N., Nazarova, T. I., Popov, A. N., Lebedev, A. A., Avaeva, S. M., and Harutyunyan, E. H. (1994) FEBS Lett., 348, 301–304.

    Article  PubMed  CAS  Google Scholar 

  6. Avaeva, S., Ignatov, P., Kurilova, S., Nazarova, T., Rodina, E., Vorobyeva, N., Oganessyan, V., and Harutyunyan, E. (1996) FEBS Lett., 399, 99–102.

    Article  PubMed  CAS  Google Scholar 

  7. Josse, J. (1966) J. Biol. Chem., 241, 1938–1947.

    PubMed  CAS  Google Scholar 

  8. Baykov, A. A., and Avaeva, S. M. (1981) Analyt. Biochem., 116, 1–4.

    Article  PubMed  CAS  Google Scholar 

  9. Sutherland, G. R. J., and Aust, S. D. (1997) Biochemistry, 36, 8567–8573.

    Article  PubMed  CAS  Google Scholar 

  10. Chervenka, C. H. (1972) Methods for Analytical Ultracentrifuge, Spinco Division of Beckman Instruments, Inc., Palo Alto.

    Google Scholar 

  11. Avaeva, S., Grigorjeva, O., Mitkevich, V., Sklynkina, V., and Varfolomeev, S. (1999) FEBS Lett., 464, 169–173.

    Article  PubMed  CAS  Google Scholar 

  12. Moiseev, V. M., Rodina, E. V., Kurilova, S. A., Vorobeva, N. N., Nazarova, T. I., and Avaeva, S. M. (2005) Biochemistry (Moscow), 70, 858–867.

    Article  CAS  Google Scholar 

  13. Smirnova, I. N., Kudryavtseva, N. A., Komissarenko, S. V., Tarusova, N. B., and Baykov, A. A. (1988) Arch. Biochem. Biophys., 267, 280–284.

    Article  PubMed  CAS  Google Scholar 

  14. Nessler, S., Fieulaine, S., Poncet, S., Galinier, A., Deutscher, J., and Janin, J. (2003) J. Bacteriol., 185, 4003–4010.

    Article  PubMed  CAS  Google Scholar 

  15. Baykov, A. A., Pavlov, A. R., Kasho, V. N., and Avaeva, S. M. (1989) Arch. Biochem. Biophys., 273, 301–308.

    Article  PubMed  CAS  Google Scholar 

  16. Vener, A. V., Nazarova, T. I., and Avaeva, S. M. (1985) Sov. J. Bioorg. Chem., 11, 431–435.

    Google Scholar 

  17. Samygina, V. R., Popov, A. N., Rodina, E. V., Vorobyeva, N. N., Lamzin, V. S., Polyakov, K. M., Kurilova, S. A., Nazarova, T. I., and Avaeva, S. M. (2001) J. Mol. Biol., 314, 633–645.

    Article  PubMed  CAS  Google Scholar 

  18. Hopfner, K.-P., Karcher, A., Shin, D. S., Craig, L., Arthur, M., Carney, J. P., and Tainer, J. A. (2000) Cell, 101, 789–800.

    Article  PubMed  CAS  Google Scholar 

  19. Arcondeguy, T., Jack, R., and Merrick, M. (2001) Microbiol. Mol. Biol. Rev., 65, 80–105.

    Article  PubMed  CAS  Google Scholar 

  20. Xu, Y., Cheah, E., Carr, P. D., van Heeswijk, W. C., Westerhoff, H. V., Vasudevan, S. G., and Ollis, D. L. (1998) J. Mol. Biol., 282, 149–165.

    Article  PubMed  CAS  Google Scholar 

  21. Butler, B. C., Hanchett, R. H., Rafailov, H., and MacDonald, G. (2002) Biophys. J., 82, 2198–2210.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rodina.

Additional information

Published in Russian in Biokhimiya, 2007, Vol. 72, No. 1, pp. 118–127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodina, E.V., Vorobyeva, N.N., Kurilova, S.A. et al. ATP as effector of inorganic pyrophosphatase of Escherichia coli. The role of residue Lys112 in binding effectors. Biochemistry (Moscow) 72, 100–108 (2007). https://doi.org/10.1134/S0006297907010129

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907010129

Key words

Navigation