Skip to main content
Log in

Substitutions of Glycine Residues Gly100 and Gly147 in Conservative Loops Decrease Rates of Conformational Rearrangements of Escherichia coli Inorganic Pyrophosphatase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Escherichia coli inorganic pyrophosphatase (PPase) is a one-domain globular enzyme characterized by its ability to easily undergo minor structure rearrangements involving flexible segments of the polypeptide chain. To elucidate a possible role of these segments in catalysis, catalytic properties of mutant variants of E. coli PPase Gly100Ala and Gly147Val with substitutions in the conservative loops II and III have been studied. The main result of the mutations was a sharp decrease in the rates of conformational changes required for binding of activating Mg2+ ions, whereas affinity of the enzyme for Mg2+ was not affected. The pH-independent parameters of MgPPi hydrolysis, k cat and k cat/K m, have been determined for the mutant PPases. The values of k cat for Gly100Ala and Gly147Val variants were 4 and 25%, respectively, of the value for the native enzyme. Parameter k cat/K m for both mutants was two orders of magnitude lower. Mutation Gly147Val increased pH-independent K m value about tenfold. The study of synthesis of pyrophosphate in the active sites of the mutant PPases has shown that the maximal level of synthesized pyrophosphate was in the case of Gly100Ala twofold, and in the case of Gly147Val fivefold, higher than for the native enzyme. The results reported in this paper demonstrate that the flexibility of the loops where the residues Gly100 and Gly147 are located is necessary at the stages of substrate binding and product release. In the case of Gly100Ala PPase, significant impairment of affinity of enzyme effector site for PPi was also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Baykov, A. A., Shestakov, A. S., Kasho, V. N., Vener, A. V., and Ivanov, A. H. (1990) Eur. J. Biochem., 194, 879–887.

    Article  PubMed  Google Scholar 

  2. Baykov, A. A., and Shestakov, A. S. (1992) Eur. J. Biochem., 206, 463–470.

    Article  PubMed  Google Scholar 

  3. Oganessyan, V. Yu., Kurilova, S. A., Vorobyeva, N. N., Nazarova, T. I., Popov, A. N., Lebedev, A. A., Avaeva, S. M., and Harutyunyan, E. H. (1994) FEBS Lett., 348, 301–304.

    Article  PubMed  Google Scholar 

  4. Kankare, J., Neal, G., Salminen, T., Glumoff, T., Cooperman, B., Lahti, R., and Goldman, A. (1994) Protein Eng., 7, 823–830.

    PubMed  Google Scholar 

  5. Avaeva, S. M., Rodina, E. V., Vorobyeva, N. N., Kurilova, S. A., Nazarova, T. I., Sklyankina, V. A., Oganessyan, V. Y., Samygina, V. R., and Harutyunyan, E. H. (1998) Biochemistry (Moscow), 63, 671–684.

    Google Scholar 

  6. Harutyunyan, E. H., Oganessyan, V. Y., Oganessyan, N. N., Tersyan, S. S., Popov, A. N., Rubinsky, S. V., Vainshtein, B. K., Nazarova, T. I., Kurilova, S. A., Vorobyeva, N. N., and Avaeva, S. M. (1996) Kristallografiya, 41, 84–96.

    Google Scholar 

  7. Kankare, J., Salminen, T., Lahti, R., Cooperman, B. S., Baykov, A. A., and Goldman, A. (1996) Biochemistry, 35, 4670–4677.

    Article  PubMed  Google Scholar 

  8. Harutyunyan, E. G., Oganessyan, V. Y., Oganessyan, N. N., Avaeva, S. M., Nazarova, T. I., Vorobyeva, N. N., Kurilova, S. A., Huber, R., and Mather, T. (1997) Biochemistry, 36, 7754–7760.

    Article  PubMed  Google Scholar 

  9. Avaeva, S., Kurilova, S., Nazarova, T., Rodina E., Vorobyeva, N., Sklyankina, V., Grigorjeva, O., Harutyunyan, E., Oganessyan, V., Wilson, K., Dauter, Z., Huber, R., and Mather, T. (1997) FEBS Lett., 410, 502–508.

    Article  PubMed  Google Scholar 

  10. Samygina, V. R., Popov, A. N., Rodina, E. V., Vorobyeva, N. N., Lamzin, V. S., Polyakov, K. M., Kurilova, S. A., Nazarova, T. I., and Avaeva, S. M. (2001) J. Mol. Biol., 314, 633–645.

    Article  PubMed  Google Scholar 

  11. Rodina, E. V. (2003) in Protein Structures: Kaleidoscope of Structural Properties and Functions (Uversky, V. N., ed.), Research Signpost, Kerala, India, pp. 627–650.

    Google Scholar 

  12. Josse, J. (1966) J. Biol. Chem., 241, 1938–1947.

    PubMed  Google Scholar 

  13. Baykov, A. A., and Avaeva, S. M. (1981) Analyt. Biochem., 116, 1–4.

    Article  PubMed  Google Scholar 

  14. Shafranskii, Iu. A., Baykov, A. A., Andrukovich, P. F., and Avaeva, S. M. (1977) Biokhimiya, 42, 1244–1254.

    Google Scholar 

  15. Avaeva, S. M., Rodina, E. V., Kurilova, S. A., Nazarova, T. I., and Vorobyeva, N. N. (1996) FEBS Lett., 392, 91–94.

    Article  PubMed  Google Scholar 

  16. Kapyla, J., Hyytia, T., Lahti, R., Goldman, A., Baykov, A. A., and Cooperman, B. S. (1995) Biochemistry, 34, 792–800.

    Article  PubMed  Google Scholar 

  17. Avaeva, S. M., Rodina, E. V., Vorobyeva, N. N., Kurilova, S. A., Nazarova, T. I., Sklyankina, V. A., Oganessyan, V. Y., and Harutyunyan, E. G. (1998) Biochemistry (Moscow), 63, 592–599.

    Google Scholar 

  18. Hough, M. A., Strange, R. W., and Hasnain, S. S. (2000) J. Mol. Biol., 304, 231–241.

    Article  PubMed  Google Scholar 

  19. Okano, Y., Mizohata, E., Xie, Y., Matsumura, H., Sagawara, H., Inoue, T., Yokota, A., and Kai, Y. (2002) FEBS Lett., 527, 33–36.

    Article  PubMed  Google Scholar 

  20. Sitnik, T. S., Vainonen, J. P., Rodina, E. V., Nazarova, T. I., Kurilova, S. A., Vorobyeva, N. N., and Avaeva, S. M. (2003) Life, 55, 37–41.

    PubMed  Google Scholar 

  21. Vainonen, J. P. (2002) Obtaining and Studying of Different Oligomeric Forms of Escherichia coli Inorganic Pyrophosphatase. Activation by Pyrophosphate: Author’s abstract of Candidate’s dissertation [in Russian], Moscow State University, Moscow.

    Google Scholar 

  22. Barry, R. J., and Dunaway-Mariano, D. (1987) Arch. Biochem. Biophys., 259, 196–203.

    Article  PubMed  Google Scholar 

  23. Rodina, E. V., Vainonen, Y. P., Vorobyeva, N. N., Kurilova, S. A., Nazarova, T. I., and Avaeva, S. M. (2001) Eur. J. Biochem., 268, 3851–3857.

    Article  PubMed  Google Scholar 

  24. Heikinheimo, P., Lehtonen, J., Baykov, A., Lahti, R., Cooperman, B. S., and Goldman, A. (1996) Structure, 4, 1491–1508.

    Article  PubMed  Google Scholar 

  25. Heikinheimo, P., Tuominen, V., Ahonen, A. K., Teplyakov, A., Cooperman, B. S., Baykov, A. A., Lahti, R., and Goldman, A. (2001) Prot. Natl. Acad. Sci., 98, 3121–3126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Moiseev.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 8, 2005, pp. 1041–1050.

Original Russian Text Copyright © 2005 by Moiseev, Rodina, Kurilova, Vorobyeva, Nazarova, Avaeva.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-049, July 24, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moiseev, V.M., Rodina, E.V., Kurilova, S.A. et al. Substitutions of Glycine Residues Gly100 and Gly147 in Conservative Loops Decrease Rates of Conformational Rearrangements of Escherichia coli Inorganic Pyrophosphatase. Biochemistry (Moscow) 70, 858–866 (2005). https://doi.org/10.1007/s10541-005-0195-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0195-z

Key words

Navigation