Skip to main content
Log in

Study of active site topography of rat liver mitochondrial dicarboxylate transporter using lipophilic substrate derivatives

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Earlier it has been demonstrated that the active site (substrate-binding site + active site channel) of rat liver mitochondrial dicarboxylate transporter is characterized by rather complex topography. Probing the active site with 2-monoalkylmalonates revealed the existence of internal and external lipophilic areas separated by a polar region. A two substrate-binding site model of the transporter has been supposed. The correctness of this model has been evaluated by probing the active site with O-acyl-L-malates differing from 2-monoalkylmalonates by 0.23 nm longer distance from the anion groups to the aliphatic chain. Changes in the polar group of the probe did not prevent its binding and showed the same variable lipophilicity pattern for the transporter channel. Probing with α,ω-alkylene dimalonates did not reveal the second substrate-binding site at the active site. The substrate-binding site did not show any differences in affinity to O-acyl-derivatives of L-malate and D-malate, except L-malate binds more effectively than D-malate. This suggests involvement of the L-malate hydroxyl group in substrate binding and stereospecific behavior of the transporter substrate-binding site. A modified one substrate-binding site model of the dicarboxylate transporter is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmieri, L., Runswick, M. J., Fiermonte, G., Walker, J. E., and Palmieri, F. (2000) J. Bioenerg. Biomembr., 32, 67–77.

    Article  PubMed  CAS  Google Scholar 

  2. Das, K., Lewis, R. Y., Combatsiaris, T. P., Lin, Y., Shapiro, L., Charron, M. J., and Scherer, P. E. (1999) Biochem. J., 344, 313–320.

    Article  PubMed  CAS  Google Scholar 

  3. Fiermonte, G., Palmieri, L., Dolce, V., Larossa, F. M., Palmieri, F., Runswick, M. J., and Walker, J. E. (1998) J. Biol. Chem., 273, 24754–24759.

    Article  PubMed  CAS  Google Scholar 

  4. Xu, Y., Kakniashvili, D. A., Gremse, D. A., Wood, D. O., Walters, D. E., Mayor, J. A., and Kaplan, R. S. (2000) J. Biol. Chem., 275, 7117–7124.

    Article  PubMed  CAS  Google Scholar 

  5. Fiermonte, G., Dolce, V., Arrigoni, R., Runswick, M. J., Walker, J. E., and Palmieri, F. (1999) Biochem. J., 344, 953–960.

    Article  PubMed  CAS  Google Scholar 

  6. Kaplan, R. S., Mayor, J. A., and Wood, D. O. (1993) J. Biol. Chem., 268, 13682–13690.

    PubMed  CAS  Google Scholar 

  7. Pebay-Peyroula, E., Dahout-Gonzalez, C., Kahn, R., Trezequet, V., Lauquin, G. J.-M., and Brandolin, G. (2003) Nature, 426, 39–44.

    Article  PubMed  CAS  Google Scholar 

  8. Sholtz, K. F., Mamaev, D. V., Bondarenko, D. I., and Lagutina, L. S. (1990) Biokhimiya, 55, 1832–1840.

    Google Scholar 

  9. Sholtz, K. F., Bondarenko, D. I., and Mamaev, D. V. (1993) FEBS Lett., 327, 54–56.

    Article  PubMed  CAS  Google Scholar 

  10. Xu, Y., Kakniashvili, D. A., Gremse, D. A., Wood, D. O., Walters, D. E., Mayor, J. A., and Kaplan, R. S. (2000) J. Biol. Chem., 275, 7117–7124.

    Article  PubMed  CAS  Google Scholar 

  11. Stipani, V., Cappello, A. R., Daddabbo, L., Natuzzi, D., Miniero, D. V., Stipani, I., and Palmieri, F. (2001) Biochemistry, 40, 15805–15810.

    Article  PubMed  CAS  Google Scholar 

  12. Marty, I., Brandolin, G., Gagnon, J., Brasseur, R., and Vignais, P. V. (1992) Biochemistry, 31, 4058–4065.

    Article  PubMed  CAS  Google Scholar 

  13. Sholtz, K. F., Mamaev, D. V., and Gladkikh, A. G. (1987) Dokl. Akad Nauk SSSR, 294, 1509–1514.

    Google Scholar 

  14. Bisaccia, F., de Palma, A., Dierks, T., Kramer, R., and Palmieri, F. (1993) Biochim. Biophys. Acta, 1142, 139–145.

    Article  PubMed  CAS  Google Scholar 

  15. Majima, E., Takeda, M., Miki, S., Shinohara, Y., and Terada, H. (2002) J. Biochem., 131, 461–468.

    PubMed  CAS  Google Scholar 

  16. Mosolova, I. A., Gorskaya, I. A., Sholtz, K. F., and Kotelnikova, A. V. (1971) Vopr. Med. Khim., 17, 286–301.

    PubMed  CAS  Google Scholar 

  17. Pedersen, P. L., Greenawalt, J. W., Reynafarje, B., Hullihen, J., Decker, G. L., Soper, J. W., and Bustamante, E. (1978) Meth. Cell Biol., 20, 411–488.

    Article  CAS  Google Scholar 

  18. Goa, J. (1953) Scand. J. Clin. Lab. Invest., 5, 218–222.

    PubMed  CAS  Google Scholar 

  19. Sholtz, K. F., and Ostrovsky, D. N. (1975) in Methods of Modern Biochemistry (Kretovich, V. L., and Sholtz, K. F., eds.) [in Russian], Nauka, Moscow, pp. 52–58.

    Google Scholar 

  20. Sholtz, K. F., and Mamaev, D. V. (1985) Biokhimiya, 50, 1877–1883.

    Google Scholar 

  21. Terada, H. (1975) Biochim. Biophys. Acta, 387, 519–532.

    Article  PubMed  CAS  Google Scholar 

  22. Bondarenko, D. I., Aliverdyeva, D. A., Mamaev, D. V., and Sholtz, K. F. (2004) Dokl. Ros. Akad. Nauk, 399, 693–695.

    Google Scholar 

  23. Heirwegh, K. P. M., Meuwissen, J. A. T. P., Vermeier, M., and de Smedt, H. (1988) Biochem. J., 254, 101–108.

    PubMed  CAS  Google Scholar 

  24. Bondarenko, D. I., Mamaev, D. V., and Sholtz, K. F. (1996) Dokl. Ros. Akad. Nauk, 349, 408–410.

    CAS  Google Scholar 

  25. Kaprelyantz, A. S., Nikiforov, V. V., Miroshnikov, A. I., Snezhkova, L. T., Eremin, V. A., and Ostrovsky, D. A. (1977) Biokhimiya, 42, 329–337.

    Google Scholar 

  26. Solov’eva, N. A., Kotelnikova, A. V., Miroshnikov, A. I., and Snezhkova, L. T. (1974) Biokhimiya, 39, 1081–1085.

    CAS  Google Scholar 

  27. Passarella, S., and Quagliariello, E. (1976) Biochimie, 58, 989–1001.

    PubMed  CAS  Google Scholar 

  28. Indiveri, C., Capobianco, L., and Palmieri, F. (1988) Ital. J. Biochem., 37, 321A–323A.

    Google Scholar 

  29. Indiveri, C., Prezioso, G., Dierks, T., Kramer, R., and Palmieri, F. (1993) Biochim. Biophys. Acta, 1143, 310–318.

    Article  PubMed  CAS  Google Scholar 

  30. Herick, K., and Kramer, R. (1995) Biochim. Biophys. Acta, 1238, 63–71.

    Article  PubMed  Google Scholar 

  31. Passarella, S., Palmieri, F., Genchi, G., Stipani, I., and Quagliariello, E. (1972) Boll. Soc. Ital. Biol. Sper., 48, 341–345.

    PubMed  CAS  Google Scholar 

  32. Klingenberg, M. (1989) Arch. Biochem. Biophys., 270, 1–14.

    Article  PubMed  CAS  Google Scholar 

  33. Kaplan, R. S., Mayor, J. A., Brauer, D., Kotaria, R., Walters, D. E., and Dean, A. M. (2000) J. Biol. Chem., 275, 12009–12016.

    Article  PubMed  CAS  Google Scholar 

  34. Dahl, S. G., Sylte, I., and Ravna, A. W. (2004) J. Pharmacol. Exp. Ther., 309, 853–860.

    Article  PubMed  CAS  Google Scholar 

  35. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., and MacKinnon, R. (2003) Nature, 423, 33–41.

    Article  PubMed  CAS  Google Scholar 

  36. Andrade, S. L., Dickmanns, A., Ficner, R., and Einsle, O. (2005) Proc. Natl. Acad. Sci. USA, 102, 14994–14999.

    Article  PubMed  CAS  Google Scholar 

  37. Miyazawa, A., Fujiyoshi, Y., and Unwin, N. (2003) Nature, 423, 949–955.

    Article  PubMed  CAS  Google Scholar 

  38. Bisaccia, F., Indivery, C., and Palmiery, F. (1988) Biochim. Biophys. Acta, 933, 229–240.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Aliverdieva.

Additional information

Original Russian Text © D. V. Mantaev, D. A. Aliverdieva, D. I. Bondarenko, K. F. Sholtz, 2006, published in Biokhimiya, 2006, Vol. 71, No. 7, pp. 984–995.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM06-022, June 4, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamaev, D.V., Aliverdieva, D.A., Bondarenko, D.I. et al. Study of active site topography of rat liver mitochondrial dicarboxylate transporter using lipophilic substrate derivatives. Biochemistry (Moscow) 71, 800–809 (2006). https://doi.org/10.1134/S0006297906070133

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906070133

Key words

Navigation