Skip to main content
Log in

Homology modeling and site-directed mutagenesis identify amino acid residues underlying the substrate selection mechanism of human monocarboxylate transporters 1 (hMCT1) and 4 (hMCT4)

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human monocarboxylate transporters (hMCTs/SLC16As) mediate the transport of monocarboxylic compounds across plasma membranes. Among the hMCTs, hMCT1 and hMCT4 are expressed in various tissues, and transport substrates involved in energy metabolism. Both transporters mediate l-lactate transport, but, although hMCT1 also transports l-5-oxoproline (l-OPro), this compound is minimally transported by hMCT4. Thus, we were interested in the molecular mechanism responsible for the difference in substrate specificity between hMCT1 and hMCT4. Therefore, we generated 3D structure models of hMCT1 and hMCT4 to identify amino acid residues involved in the substrate specificity of these transporters. We found that the substrate specificity of hMCT1 was regulated by residues involved in turnover number (M69) and substrate affinity (F367), and these residues were responsible for recognizing (directly or indirectly) the –NH– moiety of l-OPro. Furthermore, our homology model of hMCT1 predicted that M69 and F367 participate in hydrophobic interactions with another region of hMCT1, emphasizing its potentially important role in the binding and translocation cycle of l-OPro. Mutagenesis experiments supported this model, showing that efficient l-OPro transport required a hydrophobic, long linear structure at position 69 and a hydrophobic, γ-branched structure at position 367. Our work demonstrated that the amino acid residues, M69 and F367, are key molecular elements for the transport of l-OPro by hMCT1. These two residues may be involved in substrate recognition and/or substrate-induced conformational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

hMCTs:

Human monocarboxylate transporters

MFS:

Major facilitator superfamily

l-OPro:

l-5-oxoproline

TM:

Transmembrane domain

HMM:

Hidden Markov model

CPC:

Cyclopentanecarboxylate

l-OCPC:

(R)-3-Oxocyclopentanecarboxylate

References

  1. Fisel P, Schaeffeler E, Schwab M (2018) Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci 11:352–364. https://doi.org/10.1111/cts.12551

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carneiro L, Pellerin L (2015) Monocarboxylate transporters: new players in body weight regulation. Obes Rev 16:55–66. https://doi.org/10.1111/obr.12256

    Article  PubMed  Google Scholar 

  3. Pinheiro C, Longatto-Filho A, Azevedo-Silva J et al (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44:127–139. https://doi.org/10.1007/s10863-012-9428-1

    Article  CAS  PubMed  Google Scholar 

  4. Sasaki S, Kobayashi M, Futagi Y et al (2013) Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4). PLoS One 8:e67690. https://doi.org/10.1371/journal.pone.0067690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Futagi Y, Sasaki S, Kobayashi M et al (2017) The flexible cytoplasmic loop 3 contributes to the substrate affinity of human monocarboxylate transporters. Biochim Biophys Acta Biomembr 1859:1790–1795. https://doi.org/10.1016/j.bbamem.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  6. Polanski R, Hodgkinson CL, Fusi A et al (2014) Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res 20:926–937. https://doi.org/10.1158/1078-0432.CCR-13-2270

    Article  CAS  PubMed  Google Scholar 

  7. Gurrapu S, Jonnalagadda SK, Alam MA et al (2016) Coumarin carboxylic acids as monocarboxylate transporter 1 inhibitors: in vitro and in vivo studies as potential anticancer agents. Bioorganic Med Chem Lett 26:3282–3286. https://doi.org/10.1016/j.bmcl.2016.05.054

    Article  CAS  Google Scholar 

  8. Quanz M, Bender E, Kopitz C et al (2018) Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol Cancer Ther 17:2285–2296. https://doi.org/10.1158/1535-7163.MCT-17-1253

    Article  CAS  PubMed  Google Scholar 

  9. Ovens MJ, Davies AJ, Wilson MC et al (2010) AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7–10. Biochem J 425:523–530. https://doi.org/10.1042/BJ20091515

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Yang C, Doherty JR et al (2014) Synthesis and structure-activity relationships of pteridine dione and trione monocarboxylate transporter 1 inhibitors. J Med Chem 57:7317–7324. https://doi.org/10.1021/jm500640x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sasaki S, Futagi Y, Kobayashi M et al (2015) Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J Biol Chem 290:2303–2311. https://doi.org/10.1074/jbc.M114.581892

    Article  CAS  PubMed  Google Scholar 

  12. Bachhawat AK, Yadav S (2018) The glutathione cycle: glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life 70:585–592. https://doi.org/10.1002/iub.1756

    Article  CAS  PubMed  Google Scholar 

  13. Kumar A, Bachhawat AK (2012) Pyroglutamic acid: throwing light on a lightly studied metabolite. Curr Sci 102:288–297. https://www.jstor.org/stable/24083854

  14. Chou J, Liu R, Yu J et al (2018) Fasting serum α-hydroxybutyrate and pyroglutamic acid as important metabolites for detecting isolated post-challenge diabetes based on organic acid profiles. J Chromatogr B Anal Technol Biomed Life Sci 1100–1101:6–16. https://doi.org/10.1016/j.jchromb.2018.09.004

    Article  CAS  Google Scholar 

  15. Qi S, Xu D, Li Q et al (2017) Metabonomics screening of serum identifies pyroglutamate as a diagnostic biomarker for nonalcoholic steatohepatitis. Clin Chim Acta 473:89–95. https://doi.org/10.1016/j.cca.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  16. Yu B, Zheng Y, Nettleton JA et al (2014) Serum metabolomic profiling and incident CKD among African Americans. Clin J Am Soc Nephrol 9:1410–1417. https://doi.org/10.2215/CJN.11971113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thiesen L, Kehler J, Clausen RP et al (2015) In vitro and in vivo evidence for active brain uptake of the GHB analog HOCPCA by the monocarboxylate transporter subtype 1. J Pharmacol Exp Ther 354:166–174. https://doi.org/10.1124/jpet.115.224543

    Article  CAS  PubMed  Google Scholar 

  18. Futagi Y, Kobayashi M, Narumi K et al (2018) Identification of a selective inhibitor of human monocarboxylate transporter 4. Biochem Biophys Res Commun 495:427–432. https://doi.org/10.1016/j.bbrc.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  19. Galić S, Schneider H-PP, Bröer A et al (2003) The loop between helix 4 and helix 5 in the monocarboxylate transporter (MCT1) is important for substrate selection and protein stability. Biochem J 376:413–422. https://doi.org/10.1042/BJ20030799

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia CK, Goldstein JL, Pathak RK et al (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76:865–873. https://doi.org/10.1016/0092-8674(94)90361-1

    Article  CAS  PubMed  Google Scholar 

  21. Rahman B, Schneider HP, Bröer A et al (1999) Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry 38:11577–11584. https://doi.org/10.1021/bi990973f

    Article  CAS  PubMed  Google Scholar 

  22. Deng D, Sun P, Yan C et al (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526:391–396. https://doi.org/10.1038/nature14655

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Heng J, Zhao Y et al (2015) Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res 25:1060–1073. https://doi.org/10.1038/cr.2015.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507:68–72. https://doi.org/10.1038/nature13116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun J, Bankston JR, Payandeh J et al (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77. https://doi.org/10.1038/nature13074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pedersen BP, Kumar H, Waight AB et al (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496:533–536. https://doi.org/10.1038/nature12042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan H, Huang W, Yan C et al (2013) Structure and mechanism of a nitrate transporter. Cell Rep 3:716–723. https://doi.org/10.1016/j.celrep.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  28. Sun L, Zeng X, Yan C et al (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490:361–366. https://doi.org/10.1038/nature11524

    Article  CAS  PubMed  Google Scholar 

  29. Nancolas B, Sessions RB, Halestrap AP (2015) Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity. Biochem J 466:177–188. https://doi.org/10.1042/BJ20141223

    Article  CAS  PubMed  Google Scholar 

  30. Johannes J, Braun D, Kinne A et al (2016) Few amino acid exchanges expand the substrate spectrum of monocarboxylate transporter 10. Mol Endocrinol 30:796–808. https://doi.org/10.1210/me.2016-1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edwards N, Anderson CMH, Conlon NJ et al (2018) Resculpting the binding pocket of APC superfamily LeuT-fold amino acid transporters. Cell Mol Life Sci 75:921–938. https://doi.org/10.1007/s00018-017-2677-8

    Article  CAS  PubMed  Google Scholar 

  32. Krypotou E, Kosti V, Amillis S et al (2012) Modeling, substrate docking, and mutational analysis identify residues essential for the function and specificity of a eukaryotic purine-cytosine NCS1 transporter. J Biol Chem 287:36792–36803. https://doi.org/10.1074/jbc.M112.400382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Monné M, Miniero DV, Daddabbo L et al (2012) Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutation in substrate binding site. J Biol Chem 287:7925–7934. https://doi.org/10.1074/jbc.M111.324855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gui C, Hagenbuch B (2008) Amino acid residues in transmembrane domain 10 of organic anion transporting polypeptide 1B3 are critical for cholecystokinin octapeptide transport. Biochemistry 47:9090–9097. https://doi.org/10.1021/bi8008455

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki S, Futagi Y, Ideno M et al (2016) Effect of diclofenac on SLC16A3/MCT4 by the Caco-2 cell line. Drug Metab Pharmacokinet 31:218–223. https://doi.org/10.1016/j.dmpk.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nicholas KB, Nicholas HB Jr, Deerfield DW II (1997) GeneDoc: analysis and visualization of genetic variation. Embnet News 4:1–4

    Google Scholar 

  38. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015-053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Remmert M, Biegert A, Hauser A, Söding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175. https://doi.org/10.1038/nmeth.1818

    Article  CAS  Google Scholar 

  40. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. https://doi.org/10.1006/jmbi.1999.3091

    Article  CAS  PubMed  Google Scholar 

  41. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960. https://doi.org/10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  42. Jefferys BR, Kelley LA, Sternberg MJE (2010) Protein folding requires crowd control in a simulated cell. J Mol Biol 397:1329–1338. https://doi.org/10.1016/j.jmb.2010.01.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie W, Sahinidis NV (2006) Residue-rotamer-reduction algorithm for the protein side-chain conformation problem. Bioinformatics 22:188–194. https://doi.org/10.1093/bioinformatics/bti763

    Article  CAS  PubMed  Google Scholar 

  44. Huang Y, Lemieux MJ, Song J et al (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620. https://doi.org/10.1126/science.1087619

    Article  CAS  PubMed  Google Scholar 

  45. Iancu CV, Zamoon J, Woo SB et al (2013) Crystal structure of a glucose/H + symporter and its mechanism of action. Proc Natl Acad Sci 110:17862–17867. https://doi.org/10.1073/pnas.1311485110

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jiang D, Zhao Y, Wang X et al (2013) Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci 110:14664–14669. https://doi.org/10.1073/pnas.1308127110

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44:W406–W409. https://doi.org/10.1093/nar/gkw336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lovell SC, Davis IW, Arendall WB III et al (2003) Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins: structure. Funct Genet 50:437–450

    Article  CAS  Google Scholar 

  49. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:327–331. https://doi.org/10.1093/nar/gkh454

    Article  CAS  Google Scholar 

  50. Marchler-Bauer A, Bo Y, Han L et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed  Google Scholar 

  51. Menke M, Berger B, Cowen L (2008) Matt: local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4:0088–0099. https://doi.org/10.1371/journal.pcbi.0040010

    Article  CAS  Google Scholar 

  52. Kim S, Chen J, Cheng T et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47:D1102–D1109. https://doi.org/10.1093/nar/gky1033

    Article  PubMed  Google Scholar 

  53. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  54. Shapovalov MV, Dunbrack RL (2011) A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19:844–858. https://doi.org/10.1016/j.str.2011.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  56. Trott oleg O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vivian D, Polli JE (2014) Mechanistic interpretation of conventional Michaelis-Menten parameters in a transporter system. Eur J Pharm Sci 64:44–52. https://doi.org/10.1016/j.ejps.2014.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Groeneweg S, Friesema ECH, Kersseboom S et al (2014) The role of Arg445 and Asp498 in the human thyroid hormone transporter MCT8. Endocrinology 155:618–626. https://doi.org/10.1210/en.2013-1521

    Article  CAS  PubMed  Google Scholar 

  59. Quistgaard EM, Löw C, Guettou F, Nordlund P (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 17:123–132. https://doi.org/10.1038/nrm.2015.25

    Article  CAS  PubMed  Google Scholar 

  60. Perland E, Fredriksson R (2017) Classification systems of secondary active transporters. Trends Pharmacol Sci 38:305–315. https://doi.org/10.1016/j.tips.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  61. Stäubli A, Capatina N, Fuhrer Y et al (2017) Abnormal creatine transport of mutations in monocarboxylate transporter 12 (MCT12) found in patients with age-related cataract can be partially rescued by exogenous chaperone CD147. Hum Mol Genet 26:4203–4214. https://doi.org/10.1093/hmg/ddx310

    Article  CAS  PubMed  Google Scholar 

  62. Manoharan C, Wilson MC, Sessions RB, Halestrap AP (2006) The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity. Mol Membr Biol 23:486–498. https://doi.org/10.1080/09687860600841967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Islam MS, Namba N, Ohata Y et al (2018) Functional analysis of monocarboxylate transporter 8 mutations in Japanese Allan-Herndon-Dudley syndrome patients. Endocr J 2018:1–11. https://doi.org/10.1507/endocrj.EJ18-0251

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS; KAKENHI Grant Number JP17J00013). We would like to thank Editage (http://www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

YF designed and performed the experiments, analyzed the results, and wrote the first draft of the manuscript. MK, KN, AF, and KI contributed to the writing of the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Masaki Kobayashi or Ken Iseki.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futagi, Y., Kobayashi, M., Narumi, K. et al. Homology modeling and site-directed mutagenesis identify amino acid residues underlying the substrate selection mechanism of human monocarboxylate transporters 1 (hMCT1) and 4 (hMCT4). Cell. Mol. Life Sci. 76, 4905–4921 (2019). https://doi.org/10.1007/s00018-019-03151-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03151-z

Keywords

Navigation