Skip to main content
Log in

Mediator-assisted laccase-catalyzed oxidation of 4-hydroxybiphenyl

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of 4-hydroxybiphenyl (4-HBP) catalyzed by laccase from Polyporus pinsitus was studied in the presence of methyl syringate (MS), which acts as an electron-transfer mediator. Measurements were performed in 0.05 M acetate buffer, pH 5.5, in the presence of 4-HBP, MS, and laccase. It is shown that the oxidation rate of the lowly reactive substrate 4-HBP significantly increases during synergistic action of the highly reactive substrate MS. Bimolecular kinetic constants of interaction between the oxidized form of laccase and MS, the former and 4-HBP, and the oxidized form of MS and 4-HBP were calculated. A kinetic scheme of the synergistic substrate action is suggested; based on this scheme, the dependence of the initial rate on reagent concentration is derived. Analyzing experimental data, we obtained kinetic constants close to those obtained by modeling the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

4-HBP:

4-hydroxybiphenyl

MS:

methyl syringate

References

  1. Grossman, J. (1995) Environ. Health. Perspect., 103, 550–554.

    PubMed  CAS  Google Scholar 

  2. Schwartz, R. D., Williams, A. L., and Hutchinson, D. B. (1980) Appl. Environ. Microbiol., 39, 702–708.

    PubMed  CAS  Google Scholar 

  3. Smith, R. V., Davis, P. J., Clark, A. M., and Glover-Milton, S. (1980) J. Appl. Bacteriol., 49, 65–73.

    PubMed  CAS  Google Scholar 

  4. Tominaga, J., Michizoe, J., Kamiya, N., Ichinose, H., Maruyama, T., and Goto, M. (2004) J. Biosci. Bioeng., 98, 14–19.

    PubMed  CAS  Google Scholar 

  5. Catelani, D., Colombi, A., Sorlini, C., and Treccani, V. (1973) Biochem. J., 134, 1063–1066.

    PubMed  CAS  Google Scholar 

  6. Gibson, D. T., Roberts, R. L., Wells, M. C., and Kobal, V. M. (1973) Biochem. Biophys. Res. Commun., 50, 211–219.

    Article  PubMed  CAS  Google Scholar 

  7. Lunt, D., and Evans, W. C. (1970) Biochem. J., 118, 54.

    Google Scholar 

  8. Smith, M. R., and Ratledge, C. (1989) Appl. Microbiol. Biotechnol., 30, 395–401.

    Article  CAS  Google Scholar 

  9. Abramowicz, D. A. (1990) Crit. Rev. Biotechnol., 10, 241–251.

    CAS  Google Scholar 

  10. Gibson, D. T., Cruden, D. L., Haddock, J. D., Zylstra, G. J., and Brand, J. M. (1993) J. Bacteriol., 175, 4561–4564.

    PubMed  CAS  Google Scholar 

  11. Piontek, K., Antorini, M., and Choinowski, T. (2002) J. Biol. Chem., 277, 37663–37669.

    Article  PubMed  CAS  Google Scholar 

  12. Solomon, E. I., Sundraham, U. M., and Machonkin, T. E. (1996) Chem. Rev., 96, 2563–2605.

    Article  PubMed  CAS  Google Scholar 

  13. Xu, F., Kulys, J. J., Duke, K., Li, K., Krikstopaitis, K., Deussen, H.-J. W., Abbate, E., Galinyte, V., and Schneider, P. (2000) Appl. Environ. Microbiol., 66, 2052–2056.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M., and Solomon, E. I. (1996) Biochim. Biophys. Acta, 1292, 303–311.

    PubMed  Google Scholar 

  15. Yaropolov, A. I., Skorobogatko, O. V., Vartanov, S. S., and Varfolomeyev, S. D. (1994) Appl. Biochem. Biotechnol., 49, 257–280.

    CAS  Google Scholar 

  16. Call, H. P., and Mucke, I. (1997) J. Biotechnol., 53, 163–202.

    Article  CAS  Google Scholar 

  17. Li, K., Xu, F., and Errikson, K.-E. (1999) Appl. Environ. Microbiol., 65, 2654–2660.

    PubMed  CAS  Google Scholar 

  18. Trudeau, F., Daigle, F., and Leech, D. (1997) Analyt. Chem., 69, 882–886.

    Article  CAS  Google Scholar 

  19. Tayhas, G., Palmore, R., and Kim, H.-H. (1999) J. Electroanalyt. Chem., 565, 110–117.

    Google Scholar 

  20. Johannes, Ch., and Majcherczyk, A. (2000) Appl. Environ. Microbiol., 66, 524–528.

    Article  PubMed  CAS  Google Scholar 

  21. Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., Schneider, P., Halkier, T., Mondorf, K., and Dalboge, H. (1996) Appl. Environ. Microbiol., 62, 834–841.

    PubMed  CAS  Google Scholar 

  22. Svir, I. B., Klymenko, O. V., and Platz, M. S. (2002) Comput. Chem., 26, 379–386.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, Ch.-Loung, Potthast, A., Rosenau, T., Gratzl, J. S., Kirkman, A. G., Nagai, D., and Miyakoshi, T. (1999) J. Mol. Catal. B Enzym., 8, 213–219.

    Article  Google Scholar 

  24. D’Acunzo, F., Galli, C., and Masci, B. (2002) Eur. J. Biochem., 269, 5330–5335.

    Article  PubMed  CAS  Google Scholar 

  25. Kulys, J. (2005) Nonlinear Analysis: Modeling and Control, 10, 223–233.

    Google Scholar 

  26. Kulys, J., and Tetianec, L. (2005) Biosens. Bioelectr., 21, 152–158.

    Article  CAS  Google Scholar 

  27. Goldberg, H., Farver, O., and Pecht, I. (1980) J. Biol. Chem., 255, 7353–7361.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bratkovskaya.

Additional information

Original Russian Text © I. Bratkovskaya, R. Ivanec, J. Kulys, 2006, published in Biokhimiya, 2006, Vol. 71, No. 5, pp. 681–686.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratkovskaya, I., Ivanec, R. & Kulys, J. Mediator-assisted laccase-catalyzed oxidation of 4-hydroxybiphenyl. Biochemistry (Moscow) 71, 550–554 (2006). https://doi.org/10.1134/S0006297906050130

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906050130

Key words

Navigation