Skip to main content
Log in

Ethylene glycol and the thermostability of trypsin in a reverse micelle system

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The influence of ethylene glycol (EG) on the kinetics of hydrolysis of N-α-benzoyl-L-arginine ethyl ether catalyzed by trypsin encapsulated in sodium bis-(2-ethylhexyl)sulfosuccinate (AOT)-based reverse micelles was studied at different temperatures. Ethylene glycol was shown to shift the range of the trypsin activity in the reverse micelles towards higher temperatures. Infrared spectroscopy showed a stabilizing effect of EG on the secondary structure of the protein in the system of reverse micelles. Electron spin resonance spectroscopy showed that the solubilized protein affected the interactions of EG with the polar head groups of AOT and altered the rigidity of the micellar matrix. The results indicate that EG increases the thermostability of the solubilized enzyme in microemulsion media by two mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EG:

ethylene glycol

BAEE:

N-α-benzoyl-L-arginine ethyl ether

AOT:

sodium bis-(2-ethylhexyl)sulfosuccinate

ESR:

electron spin resonance

References

  1. Arakawa, T., and Timasheff, S. N. (1982) Biochemistry, 21, 6536–6544.

    Article  PubMed  CAS  Google Scholar 

  2. Tzanov, T., Andreaus, J., Guebitz, G., and Cavaco-Paulo, A. (2003) Biotechnol. Industry, 6, 1–11.

    Google Scholar 

  3. Gekko, K., and Timasheff, S. N. (1981) Biochemistry, 20, 4677–4686.

    Article  PubMed  CAS  Google Scholar 

  4. Bhat, R., and Timasheff, S. N. (1992) Protein Sci., 1, 1133–1143.

    Article  PubMed  CAS  Google Scholar 

  5. Martinek, K., Levashov, A. V., Klyachko, N. L., and Beresin, I. V. (1977) Dokl. Akad. Nauk SSSR, 236, 920–923.

    CAS  Google Scholar 

  6. Levashov, A. V., and Klyachko, N. L. (2001) Izvestiya Akad. Nauk Ser. Khim., No. 10, 1638–1651.

  7. Hait, S. K., Moulik, S. P., Rodgers, M. P., Burke, S. E., and Palepu, R. (2001) J. Phys. Chem. B, 105, 7145–7154.

    Article  CAS  Google Scholar 

  8. Schubel, D., and Ilgenfritz, G. (1997) Langmuir, 13, 4246–4250.

    Article  Google Scholar 

  9. Khamidullin, R. N., Zuev, Yu. F., and Vylegzhanina, N. N. (2003) in Structure and Dynamics of Molecular Systems [in Russian], Pt. 2, KGU, Kazan, pp. 71–74.

    Google Scholar 

  10. Klyachko, N. L., Bogdanova, N. G., Martinek, K., and Levashov, A. V. (1990) Bioorg. Khim., 16, 581–589.

    CAS  Google Scholar 

  11. Kamenskaya, E. O., Sakodynskaya, I. K., and Levashov, A. V. (1995) Bioorg. Khim., 21, 825–827.

    CAS  Google Scholar 

  12. Klyachko, N. L., Bogdanova, N. G., Levashov, A. V., Kabanov, A. V., Pshezhetskii, A. V., Khmelnitskii, Yu. L., Martinek, K., and Beresin, I. V. (1987) Dokl. Akad. Nauk SSSR, 297, 483–487.

    CAS  Google Scholar 

  13. Bresler, S. E., Shampan’, M., and Frenkel’, S. Ya. (1961) Biokhimiya, 26, 909–915.

    CAS  Google Scholar 

  14. Walde, P., Peng, Q., Fandavis, N. W., Battistel, E., and Luisi, P. L. (1988) Eur. J. Biochem., 173, 401–409.

    Article  PubMed  CAS  Google Scholar 

  15. Dong, A., Huang, P., and Caughey, W. S. (1990) Biochemistry, 29, 3303–3308.

    Article  PubMed  CAS  Google Scholar 

  16. Zuev, Yu. F., Vylegzhanina, N. N., and Zakhartchenko, N. L. (2003) Appl. Magn. Res., 25, 29–42.

    Article  CAS  Google Scholar 

  17. Khoshtariya, D. E., and Goguadze, N. G. (1985) Bioorg. Khim., 11, 1621–1625.

    CAS  Google Scholar 

  18. Khoshtariya, D. E. (1986) Biofizika, 31, 391–394.

    CAS  Google Scholar 

  19. Rodionova, M. V., Belova, A. B., Mozhaev, V. V., and Beresin, I. V. (1988) Biotekhnologiya, 4, 60–72.

    Google Scholar 

  20. Mozhaev, V. V., Khmelnitsky, Y. L., Sergeeva, M. V., Belova, A. B., Klyachko, N. L., Levashov, A. V., and Martinek, K. (1989) Eur. J. Biochem., 184, 597–602.

    Article  PubMed  CAS  Google Scholar 

  21. Stupishina, E. A., and Vershinina, V. I. (1998) Biochemistry (Moscow), 63, 1277–1281.

    Google Scholar 

  22. Rubin, A. B. (1987) Biophysics [in Russian], Vol. 1, Vysshaya Shkola, Moscow.

    Google Scholar 

  23. Stupishina, E. A., Faizullin, D. A., Zakharchenko, N. L., Fedotov, V. D., and Zuev, Y. F. (2001) Mendeleev Commun., 11, 237–240.

    Article  CAS  Google Scholar 

  24. Zakharchenko, N. L. (2004) Structure and Catalytic Properties of the System Trypsin-Reverse Micelle under Conditions of the Changing Temperature: Candidate’s dissertation [in Russian], KIBB KazNTs RAN, Kazan’.

    Google Scholar 

  25. Klyachko, N. L., Pshezhetskii, A. V., Kabanov, A. V., Vakula, S. V., Martinek, K., and Levashov, A. V. (1990) Biol. Membr. (Moscow), 7, 467–472.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Zuev.

Additional information

Original Russian Text © E. A. Stupishina, R. N. Khamidullin, N.N. Vylegzhanina, D. A. Faizullin, Yu. F. Zuev, 2006, published in Biokhimiya, 2006, Vol. 71, No. 5, pp. 660–665.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stupishina, E.A., Khamidullin, R.N., Vylegzhanina, N.N. et al. Ethylene glycol and the thermostability of trypsin in a reverse micelle system. Biochemistry (Moscow) 71, 533–537 (2006). https://doi.org/10.1134/S0006297906050105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906050105

Key words

Navigation