Skip to main content
Log in

The Guaranteeing Estimation Method to Calibrate a Gyro Unit

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper is devoted to the guaranteeing estimation method with application to the calibration problem of a gyro unit. Mathematical models are constructed to describe the kinematics of the gyro unit on a test bench. The applicability limits and errors of the models are investigated. A numerical solution procedure is developed for guaranteeing estimation problems based on their reduction to l1-approximation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. An open source Python-embedded modeling language for convex optimization problems; https://web.stanford.edu/boyd/papers/pdf/cvxpyrewriting.pdf.

REFERENCES

  1. Lidov, M.L., On the A Priori Accuracy of Parameter Estimation by Means of the Least Squares Method, Kosm. Issled., 1964, vol. 2, no. 5, pp. 713–715.

    Google Scholar 

  2. Krasovskii, N.N., On the Theory of Controllability and Observability of Linear Dynamic Systems, J. Appl. Math. Mech., 1964, vol. 28, no. 1, pp. 1–14.

    Article  MathSciNet  Google Scholar 

  3. Lidov, M.L., Minimax Estimation Methods, Preprint No. 71 of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2010.

  4. Matasov, A.I., Estimators for Uncertain Dynamic Systems, Dordrecht: Springer, 2013.

  5. Akimov, P.A., Derevyankin, A.V., and Matasov, A.I., Garantiruyushchii podkhod i l 1 -approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh (Guaranteeing Approach and l 1-norm Approximation in the Problems of SDINS Parameter Estimation under Bench Testing), Moscow: Mosk. Gos. Univ., 2012.

  6. Kozlov, A.V., Parusnikov, N.A., Vavilova, N.B., Tarygin, I.E., and Golovan, A.A., Dynamic Calibration of Assembled Strapdown Inertial Navigation Systems on a Rate Table, Izv. SFedU. Engin. Sci., 2018, no. 1, pp. 241–257.

  7. Vavilova, N.B., Vasineva, I.A., Golovan, A.A., Kozlov, A.V., Papusha, I.A., and Parusnikov, N.A., The Calibration Problem in Inertial Navigation, J. Math. Sci., 2021, vol. 253, no. 6, pp. 818–836.

    Article  MathSciNet  MATH  Google Scholar 

  8. Veremeenko, K.K. and Galay, I.A., Calibration Algorithm Development for Inertial Navigation System with Use of Two-Axis Motion Simulator, Trudy MAI, 2013, no. 63, pp. 1–14.

  9. Tarygin, I.E., Calibration of the Thermal Model of an Inertial Measurement Unit with Three Angular Rate Sensors, Gyroscopy Navig., 2020, vol. 11, pp. 25–33.

    Article  Google Scholar 

  10. Kailath, T., Sayed, A.H., and Hassibi, B., Linear Estimation, New Jersey: Prentice Hall, 2000.

    MATH  Google Scholar 

  11. Matasov, A.I., Variational Problems for Calibrating an Accelerometer Unit, Autom. Remote Control, 2019, vol. 80, no. 12, pp. 2135–2151.

    Article  MathSciNet  MATH  Google Scholar 

  12. Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem, Ch. I: Matematicheskie modeli inertsial’noi navigatsii (Mathematical Foundations of Navigation Systems, Part I: Mathematical Models of Inertial Navigation), Moscow: MAKS Press, 2011.

  13. Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge: Cambridge University Press, 2004.

    Book  MATH  Google Scholar 

  14. Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J., Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 2010, vol. 3, no. 1, pp. 1–122.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Akimov or A. I. Matasov.

Additional information

This paper was recommended for publication by O.A. Stepanov, a member of the Editorial Board

APPENDIX

APPENDIX

Proof of Lemma 1. On the time interval T the rotation occurs about a fixed direction. Therefore, the rotation matrix Dcir is decomposed by averaging as follows:

$${{\bar {D}}_{{{\text{cir}}}}} = {{\bar {D}}_{{{\text{cir1}}}}} + {{\bar {D}}_{{{\text{cir2}}}}},\quad {{\bar {D}}_{{{\text{cir1}}}}} = \left( {\begin{array}{*{20}{c}} 0&0&0 \\ 0&0&0 \\ 0&0&1 \end{array}} \right),\quad {{\bar {D}}_{{{\text{cir2}}}}} = \left( {\begin{array}{*{20}{c}} {{{c}_{1}}}&{ - {{c}_{2}}}&0 \\ {{{c}_{2}}}&{{{c}_{1}}}&0 \\ 0&0&0 \end{array}} \right),$$
(A.1)

where ci is the result of the time averaging of the functions sin ψ(t) and cos ψ(t).

Due to formulas (6), (7), and (A.1), in the course of averaging, the vector uz is represented as the sum of two terms, one proportional to w and the other orthogonal to D(0)w:

$$\begin{gathered} {{{\bar {u}}}_{z}} = \bar {D}{{u}_{x}} = D{\kern 1pt} '{\kern 1pt} {{{\bar {D}}}_{{{\text{cir1}}}}}{{D}_{{{\text{fix}}}}}{{u}_{x}} + D{\kern 1pt} '{\kern 1pt} {{{\bar {D}}}_{{{\text{cir2}}}}}{{D}_{{{\text{fix}}}}}{{u}_{x}} \\ = D{\kern 1pt} '\left( \begin{gathered} {{0}_{{1 \times 3}}} \\ {{0}_{{1 \times 3}}} \\ {{w}^{{\text{T}}}} \\ \end{gathered} \right){{u}_{x}} + {{u}^{ \bot }} = d_{3}^{'}{{w}^{{\text{T}}}}{{u}_{x}} + {{u}^{ \bot }} = {{D}_{{\operatorname{init} }}}({{I}_{3}} + \hat {\beta })w{{w}^{{\text{T}}}}{{u}_{x}} + {{u}^{ \bot }}, \\ \end{gathered} $$
(A.2)

where u = \(D{\kern 1pt} '{\kern 1pt} {{\bar {D}}_{{{\text{cir2}}}}}{{D}_{{{\text{fix}}}}}{{u}_{x}}\).

The orthogonality of u to the direction D(0)w = Dinit(I3 + \(\hat {\beta }\))w can be established using formulas (2) and (6): D(0)w = DDcir(0)Dfixw = D'(0, 0, 1)T; the corresponding scalar product is explicitly calculated as

$${{w}^{{\text{T}}}}D{{(0)}^{{\text{T}}}}{{u}^{ \bot }} = (0,\,\,0,\,\,1)D{\kern 1pt} {{'}^{{\text{T}}}}D{\kern 1pt} '\left( {\begin{array}{*{20}{c}} {{{c}_{1}}}&{ - {{c}_{2}}}&0 \\ {{{c}_{2}}}&{{{c}_{1}}}&0 \\ 0&0&0 \end{array}} \right){{D}_{{{\text{fix}}}}}{{u}_{x}} = {{(0,\,\,0,\,\,1)}^{{\text{T}}}}\left( {\begin{array}{*{20}{c}} {{{c}_{1}}}&{ - {{c}_{2}}}&0 \\ {{{c}_{2}}}&{{{c}_{1}}}&0 \\ 0&0&0 \end{array}} \right){{D}_{{{\text{fix}}}}}{{u}_{x}} = 0.$$

Using the component c1 as an example, we explain the idea of estimating from above the result of the time averaging of the function cos ψ(t). Consider the continuous case of averaging:

$${{c}_{1}} = \frac{1}{T}\int\limits_0^{\text{T}} {\cos \psi (t)dt.} $$

The dynamics of the angle ψ are described by a differential equation and constraints on the functions on its right-hand side:

$$\frac{{d\psi (t)}}{{dt}} = s + \varepsilon (t),\quad \psi (0) = {{\psi }_{0}},\quad \left| {\varepsilon (t)} \right|\;\leqslant \;{{\varepsilon }_{{\max }}},\quad s + \varepsilon (t) > 0.$$

The change of variables t = t(ψ), \(\epsilon \)(ψ) = ε(t(ψ)), |\(\epsilon \)(ψ)| \(\leqslant \) εmax, in the integral yields

$$\int\limits_0^{\text{T}} {\cos \psi (t)dt} = \int\limits_{{{\psi }_{0}}}^{\psi (T)} {\frac{{\cos \psi }}{{s + \epsilon (\psi )}}d\psi .} $$

This integral can be written as the sum of integrals on the half-periods of the function cosψ (intervals where the function has a fixed sign) and two integrals corresponding to the time intervals at the beginning and end of the interval [ψ0, ψ(T)]. For example, if ψ0 < π/2, this interval is represented as follows:

$$[{{\psi }_{0}},\psi (T)] = [{{\psi }_{0}},\pi {\text{/}}2] \cup [\pi {\text{/}}2,3\pi {\text{/}}2] \cup [3\pi {\text{/}}2,5\pi {\text{/}}2] \cup \ldots \cup [\pi {\text{/}}2 + 2\pi {{n}_{{{\text{cir}}}}},\psi (T)],$$

where ncir is the number of complete revolutions of the system about the axis of rotation and the length of the last interval does not exceed π, i.e., π/2 + 2πncir \(\leqslant \) ψ(T) \(\leqslant \) 3π/2 + 2πncir.

The integrand on each such interval has a fixed sign, and the maximum value of the integrand (hence, that of the integral) is achieved at \(\epsilon \)(ψ) = –sgn(cos ψ)εmax:

$$\int {\frac{{\cos \psi }}{{s + \epsilon (\psi )}}d\psi } \;\leqslant \;\int {\frac{{\cos \psi }}{{{{{\min }}_{{\left| \epsilon \right|\;\leqslant \;{{\varepsilon }_{{\max }}}}}}(s + \epsilon )}}d\psi } = \int {\frac{{\cos \psi }}{{s - \operatorname{sgn} (\cos \psi ){{\epsilon }_{{\max }}}}}d\psi .} $$

Therefore, each integral can be estimated bilaterally (from below and above):

$$\left| {\int\limits_{{{\psi }_{0}}}^{\pi /2} {\frac{{\cos \psi }}{{s + \epsilon (\psi )}}d\psi } } \right|\;\leqslant \;\frac{2}{{s - {{\varepsilon }_{{\max }}}}},\quad \left| {\int\limits_{\pi /2 + 2\pi {{n}_{{{\text{cir}}}}}}^{\psi (T)} {\frac{{\cos \psi }}{{s + \epsilon (\psi )}}d\psi } } \right|\;\leqslant \;\frac{2}{{s - {{\varepsilon }_{{\max }}}}},$$
$$\frac{{ - 2}}{{s - {{\varepsilon }_{{\max }}}}}\;\leqslant \;\int\limits_{\pi /2}^{3\pi /2} {\frac{{\cos \psi }}{{s + \epsilon (\psi )}}d\psi } \;\leqslant \;\frac{{ - 2}}{{s + {{\varepsilon }_{{\max }}}}},\quad \frac{2}{{s + {{\varepsilon }_{{\max }}}}}\;\leqslant \;\int\limits_{3\pi /2}^{5\pi /2} {\frac{{\cos \psi }}{{s + \epsilon (\psi )}}d\psi } \;\leqslant \;\frac{2}{{s - {{\varepsilon }_{{\max }}}}}.$$

As a result, the absolute value of the integral on the averaging interval admits the following upper bound:

$$\left| {\int\limits_{{{\psi }_{0}}}^{\psi (T)} {\frac{{\cos \psi }}{{s + \varepsilon (\psi )}}d\psi } } \right|\;\leqslant \;\left| {\int\limits_{{{\psi }_{0}}}^{\pi /2} {\frac{{\cos \psi }}{{s + \varepsilon (\psi )}}d\psi } } \right| + \left| {\int\limits_{\pi /2 + 2\pi {{n}_{{{\text{cir}}}}}}^{\psi (T)} {\frac{{\cos \psi }}{{s + \varepsilon (\psi )}}d\psi } } \right|$$
$$ + \;\left| {\sum\limits_{j = 1}^{{{n}_{{{\text{cir}}}}}} {\left( {\int\limits_{\pi /2}^{3\pi /2} {\frac{{\cos \psi }}{{s + \varepsilon (\psi )}}d\psi } + \int\limits_{3\pi /2}^{5\pi /2} {\frac{{\cos \psi }}{{s + \varepsilon (\psi )}}d\psi } } \right)} } \right|$$
$$\leqslant \;\frac{4}{{s - {{\varepsilon }_{{\max }}}}} + \left| {\sum\limits_{j = 1}^{{{n}_{{{\text{cir}}}}}} {\frac{{ - 2}}{{s + {{\varepsilon }_{{\max }}}}}} + \frac{2}{{s - {{\varepsilon }_{{\max }}}}}} \right|\;\leqslant \;\frac{4}{{s - {{\varepsilon }_{{\max }}}}} + \frac{{{{n}_{{{\text{cir}}}}}4{{\varepsilon }_{{\max }}}}}{{(s + {{\varepsilon }_{{\max }}})(s - {{\varepsilon }_{{\max }}})}}.$$

The angular rate and the number of complete revolutions of the system are related by

$$sT = 2\pi \,{{n}_{{{\text{cir}}}}} + \Delta \psi $$

for some Δψ \(\leqslant \) 2π. Consequently,

$$\left| {{{c}_{1}}} \right| = \left| {\frac{1}{T}\int\limits_0^{\text{T}} {\cos \psi (t)dt} } \right|\;\leqslant \;\frac{4}{{T(s - {{\varepsilon }_{{\max }}})}} + \frac{{{{n}_{{{\text{cir}}}}}4{{\varepsilon }_{{\max }}}}}{{T({{s}^{2}} - \varepsilon _{{\max }}^{2})}}$$
$$ = \frac{4}{{T(s - {{\varepsilon }_{{\max }}})}} + \frac{{(sT - \Delta \psi )4{{\varepsilon }_{{\max }}}}}{{2\pi sTs(1 - \varepsilon _{{\max }}^{2}{\text{/}}{{s}^{2}})}} = \frac{4}{{T(s - {{\varepsilon }_{{\max }}})}} + \frac{{2(1 - \Delta \psi {\text{/}}(sT))}}{{\pi (1 - \varepsilon _{{\max }}^{2}{\text{/}}{{s}^{2}})}}\frac{{{{\varepsilon }_{{\max }}}}}{s}.$$

Thus, we obtain

$$\left| {{{c}_{1}}} \right|\;\leqslant \;\frac{4}{{T(s - {{\varepsilon }_{{\max }}})}} + C\frac{{{{\varepsilon }_{{\max }}}}}{s},$$

where the parameter C = \(\frac{2}{{\pi (1 - \varepsilon _{{\max }}^{2}{\text{/}}{{s}^{2}})}}\) is an upper bound for the fraction \(\frac{{2(1 - \Delta \psi {\text{/}}(sT))}}{{\pi (1 - \varepsilon _{{\max }}^{2}{\text{/}}{{s}^{2}})}}\).

Proof of Proposition 1. We transform the integrand of the objective function into problem (18) by substituting formulas (12) and (13) with the additional notation \({v}\) = \({v}\)(s, y) = Dinit(sy + yyTux):

$${{\Phi }^{{\text{T}}}}z = {{\Phi }^{{\text{T}}}}\left( {\Gamma {{D}_{{\operatorname{init} }}}(sy + y{{y}^{{\text{T}}}}{{u}_{x}}) + {{\nu }_{0}} + r + \delta \nu {\kern 1pt} '} \right)$$
$$ = {{\Phi }^{{\text{T}}}}\Gamma {v} + {{\Phi }^{{\text{T}}}}{{\nu }_{0}} + {{\Phi }^{{\text{T}}}}\delta \nu {\kern 1pt} '\; + {{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}\left( { - s(\hat {y}\alpha + \hat {y}\beta ) + \varepsilon y + {{y}^{{\text{T}}}}{{u}_{x}}(\hat {\alpha } + \hat {\beta })y + y{{y}^{{\text{T}}}}{{{\hat {u}}}_{x}}\alpha } \right)$$
$$ = {{({v} \otimes \Phi )}^{{\text{T}}}}\gamma + {{\Phi }^{{\text{T}}}}{{\nu }_{0}} + {{\Phi }^{{\text{T}}}}\delta \nu {\kern 1pt} '\; + {{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}\left( { - s(\hat {y}\alpha + \hat {y}\beta ) + \varepsilon y - {{y}^{{\text{T}}}}{{u}_{x}}(\hat {y}\alpha + \hat {y}\beta ) + y{{y}^{{\text{T}}}}{{{\hat {u}}}_{x}}\alpha } \right).$$

Hence,

$$\begin{gathered} {{\Phi }^{{\text{T}}}}z = {{({v} \otimes \Phi )}^{{\text{T}}}}\gamma + {{\Phi }^{{\text{T}}}}{{\nu }_{0}} + {{\Phi }^{{\text{T}}}}\delta \nu {\kern 1pt} '\; + \varepsilon {{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}y \\ + \;{{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}\left( { - s\hat {y} - {{y}^{{\text{T}}}}{{u}_{x}}\hat {y} + y{{y}^{{\text{T}}}}{{{\hat {u}}}_{x}}} \right)\alpha + {{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}\left( { - s\hat {y} - {{y}^{{\text{T}}}}{{u}_{x}}\hat {y}} \right)\beta . \\ \end{gathered} $$
(A.3)

These formulas involve, first, the properties of matrix operations

$${{\Phi }^{{\text{T}}}}\Gamma {v} = ({{\Phi }^{{\text{T}}}} \otimes {{{v}}^{{\text{T}}}})\gamma = {{({v} \otimes \Phi )}^{{\text{T}}}}\gamma ,\quad \hat {\alpha }y = - \hat {y}\alpha $$

and, second, the possibility of transferring the scalar product yTux to the other part of the corresponding multiplier group: \(\hat {\alpha }y{{y}^{{\text{T}}}}{{u}_{x}}\) = \( - {{y}^{{\text{T}}}}{{u}_{x}}\hat {y}\alpha \).

Let us define the matrices \(C_{\alpha }^{'}\) and \(C_{\beta }^{'}\):

$$C_{\alpha }^{'} = {{D}_{{\operatorname{init} }}}\left( { - s\hat {y} - {{y}^{{\text{T}}}}{{u}_{x}}\hat {y} + y{{y}^{{\text{T}}}}{{{\hat {u}}}_{x}}} \right),\quad C_{\beta }^{'} = {{D}_{{\operatorname{init} }}}\left( { - s\hat {y} - {{y}^{{\text{T}}}}{{u}_{x}}\hat {y}} \right).$$

Then the right-hand side of (A.3) is represented as a function that linearly depends on the variables q, α, β, ε, and \(\delta \tilde {\nu }\):

$${{\Phi }^{{\text{T}}}}(y,s)z(y,s) = {{({v} \otimes \Phi )}^{{\text{T}}}}\gamma + {{\Phi }^{{\text{T}}}}{{\nu }_{0}} + {{\Phi }^{{\text{T}}}}\delta \nu {\kern 1pt} '\; + {{\Phi }^{{\text{T}}}}C_{\alpha }^{'}\alpha + {{\Phi }^{{\text{T}}}}C_{\beta }^{'}\beta + \varepsilon {{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}y.$$
(A.4)

Substituting formula (A.4) into the original objective functional (19) yields

$$\begin{gathered} I(\Phi ) = \mathop {\sup }\limits_{(q,\alpha ,\beta ,\varepsilon ,\delta \nu ') \in \mathcal{B}'} \left| {l(\Phi ) - {{a}^{{\text{T}}}}q} \right| \\ = \mathop {\sup }\limits_{(q,\alpha ,\beta ,\varepsilon ,\delta \nu ') \in \mathcal{B}'} \left| {\int {\left( {{{{({v} \otimes \Phi )}}^{{\text{T}}}}\gamma + {{\Phi }^{{\text{T}}}}{{\nu }_{0}} + {{\Phi }^{{\text{T}}}}\delta \nu {\kern 1pt} '\; + {{\Phi }^{{\text{T}}}}C_{\alpha }^{'}\alpha + {{\Phi }^{{\text{T}}}}C_{\beta }^{'}\beta + \varepsilon {{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}y} \right)dyds - {{a}^{{\text{T}}}}q} } \right|. \\ \end{gathered} $$

Since q = col(γ, ν0), the function l(Φ) – aTq linear depends on q, and the multiplier at q is

$$\left( \begin{gathered} \int {{v} \otimes \Phi dyds} \\ \int {\Phi dyds} \\ \end{gathered} \right) - a.$$

Therefore, if condition (22) is violated, we have \({{\sup }_{{q \in {{{\mathbf{R}}}^{{12}}}}}}\)|l(Φ) – aTq| = +∞ for a fixed Φ and arbitrary admissible α, β, ε, and δν'. Consequently,

$$\mathop {\sup }\limits_{(q,\alpha ,\beta ,\varepsilon ,\delta \nu ') \in \mathcal{B}'} \left| {l(\Phi ) - {{a}^{{\text{T}}}}q} \right| = \mathop {\sup }\limits_{(q,\alpha ,\beta ,\varepsilon ,\delta \nu ') \in \mathcal{B}'} \left| {\int {\left( {{{\Phi }^{{\text{T}}}}\delta \tilde {\nu } + {{\Phi }^{{\text{T}}}}C_{\alpha }^{'}\alpha + {{\Phi }^{{\text{T}}}}C_{\beta }^{'}\beta + \varepsilon {{\Phi }^{{\text{T}}}}{{D}_{{\operatorname{init} }}}y} \right)dyds} } \right|.$$

In other words, it is necessary to maximize the absolute value of a linear function where each term depends on only one variable not figuring in the other terms. This means that the maximum can be found independently in each of the variables. For a fixed Φ, the maximum is determined in an explicit form:

$$\mathop {\sup }\limits_{\alpha :\left| {{{\alpha }_{i}}} \right|\leqslant {{\alpha }_{{\max }}}} \int {{{\Phi }^{{\text{T}}}}C_{\alpha }^{'}\alpha dyds} = \mathop {\sup }\limits_{\alpha :\left| {{{\alpha }_{i}}} \right|\leqslant {{\alpha }_{{\max }}}} \int {\left( {\sum\limits_{i = 1}^3 {{{{(C{{{_{\alpha }^{'}}}^{{\text{T}}}}\Phi )}}_{i}}{{\alpha }_{i}}} } \right)dyds} $$
$$ = \sum\limits_{i = 1}^3 {\mathop {\sup }\limits_{{{\alpha }_{i}}:\left| {{{\alpha }_{i}}} \right|\leqslant {{\alpha }_{{\max }}}} } \int {{{{(C{{{_{\alpha }^{'}}}^{{\text{T}}}}\Phi )}}_{i}}{{\alpha }_{i}}dyds} $$
$$ = \int {\left( {\sum\limits_{i = 1}^3 {{{\alpha }_{{\max }}}\operatorname{sgn} ({{{(C{{{_{\alpha }^{'}}}^{{\text{T}}}}\Phi )}}_{i}}){{{(C{{{_{\alpha }^{'}}}^{{\text{T}}}}\Phi )}}_{i}}} } \right)dyds} = \int {{{{\left\| {{{C}_{\alpha }}\Phi } \right\|}}_{1}}dyds.} $$

A similar chain of considerations applies to the other terms in the objective functional (18). Thus, the explicit calculation of the supremum of the original objective functional finally leads to the optimization problem (21)–(22).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, P.A., Matasov, A.I. The Guaranteeing Estimation Method to Calibrate a Gyro Unit. Autom Remote Control 84, 699–714 (2023). https://doi.org/10.1134/S0005117923070020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923070020

Keywords:

Navigation