Skip to main content
Log in

Calibration of a 3D Sensor under Its Orientation Constraint

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) sensors usually require a calibration procedure. In some cases, scale factor errors depend on the signs of the projections of the vector input signal onto the sensitivity axes of the sensor. To eliminate the ambiguity of scale factor errors, the angular positions of the sensor can be restricted so that the corresponding projections have a definite sign. This paper presents an analytical solution of the optimal calibration problem for a 3D sensor under a constraint on its angular positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Ishlinskii, A.Yu., Orientatsiya, giroskopy i inertsial’naya navigatsiya (Orientation, Gyros, and Inertial Navigation), Moscow: Nauka, 1976.

  2. Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem, Ch. I: Matematicheskie modeli inertsial’noi navigatsii (Mathematical Foundations of Navigation Systems, Part I: Mathematical Models of Inertial Navigation), Moscow: MAKS Press, 2011.

  3. Cai, Q., Yang, G., Song, N., and Lin, Y., Systematic Calibration for Ultra-High Accuracy of Inertial Measurement Unit, Sensors, 2016, vol. 16, pp. 940–955.

    Article  Google Scholar 

  4. Secer, G. and Barshan, B., Improvements in Deterministic Error Modeling and Calibration of Inertial Sensors and Magnitometers, Sensors and Actuators A, 2016, vol. 247, pp. 522–538.

    Article  Google Scholar 

  5. Vavilova, N.B., Vasineva, I.A., Golovan, A.A., Kozlov, A.V., Papusha, I.A., and Parusnikov, N.A., The Calibration Problem in Inertial Navigation, Fundam. Prikl. Mat., 2018, vol. 22, no. 2, pp. 89–115.

    MATH  Google Scholar 

  6. Kozlov, A. and Tarygin, I., Real-Time Estimation of Temperature Time Derivative in Inertial Measurement Unit by Finite-Impulse-Response Exponential Regression on Updates, Sensors, 2020, vol. 20, no. 5, pp. 1299–1319.

    Article  Google Scholar 

  7. Golovan, A.A., Matasov, A.I., and Tarygin, I.E., Calibration of an Accelerometer Unit with Asymmetric Models of Readings of Sensors, J. Comput. Syst. Sci. Int., 2022, vol. 61, no. 4, pp. 240–252.

    Article  MATH  Google Scholar 

  8. Bolotin, Y. and Savin, V., Turntable IMU Calibration Algorithm Based on the Fourier Transform Technique, Sensors, 2023, no. 2, pp. 1045–1060.

  9. Lidov, M.L., On an a Priori Accuracy of Parameter Estimation by the Least Squares Method, Kosm. Issled., 1964, vol. 2, no. 5, pp. 713–715.

    Google Scholar 

  10. Krasovskii, N.N., On the Theory of Controllability and Observability of Linear Dynamic Systems, J. Appl. Math. Mech., 1964, vol. 28, no. 1, pp. 1–14.

    Article  MathSciNet  Google Scholar 

  11. Krasovskii, N.N., Teoriya upravleniya dvizheniem (Theory of Motion Control), Moscow: Nauka, 1968.

  12. Lidov, M.L., Minimax Estimation Methods, Preprint No. 71 of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2010.

  13. Bakhshiyan, B.Ts., Nazirov, R.R., and El’yasberg, P.E., Opredelenie i korrektsiya dvizheniya (Determination and Correction of Motion), Moscow: Nauka, 1980.

  14. Belousov, L.Yu., Otsenivanie parametrov dvizheniya kosmicheskikh apparatov (Estimation of Motion Parameters for Space Vehicles), Moscow: Fizmatlit, 2002.

  15. Matasov, A.I., Metod garantiruyushchego otsenivaniya (Method of Guaranteeing Estimation), Moscow: Mosk. Gos. Univ., 2009.

  16. Matasov, A.I., Estimators for Uncertain Dynamic Systems, Dordrecht–Boston–London: Springer Science+Business Media, 2013.

  17. Bobrik, G.I. and Matasov, A.I., Optimal Guaranteeing Estimation of Parameters of an Accelerometer Unit, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 1993, no. 5, pp. 8–14.

  18. Akimov, P.A., Derevyankin, A.V., and Matasov, A.I., Garantiruyushchii podkhod i l 1 -approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh (Guaranteeing Approach and l 1-Norm Approximation in the Problem of SDINS Parameter Estimation under Bench Testing), Moscow: Mosk. Gos. Univ., 2012.

  19. Matasov, A.I., Variational Problems for Calibrating an Accelerometer Unit, Autom. Remote Control, 2019, vol. 80, no. 12, pp. 2135–2151.

    Article  MathSciNet  MATH  Google Scholar 

  20. Braslavskii, D.A., Polikovskii, E.F., and Yakubovich, A.M., A Calibration Method for a Three-Axes Accelerometer Unit, Patent Application no. 2422425/23, USSR, November 24, 1976.

  21. Chesnokov, G.I., Polikovskii, E.F., Molchanov, A.V., and Kremer, V.I., Some Approaches to Improve the Performance Characteristics of Strapdown Inertial Navigation Systems, Tr. X SPb. mezhd. konf. po integrirovannym navigatsionnym sistemam (Proc. 10th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: Tsentr. Nauchno-Issled. Inst. Elektropribor, 2003, pp. 155–164.

  22. Izmailov, E.A., Lepe, S.N., Molchanov, A.V., and Polikovskii, E.F., Scalar Method for Calibration and Balancing of Strapdown Inertial Navigation Systems, Tr. XV SPb. mezhdunarodnoi konferentsii po integrirovannym navigatsionnym sistemam (Proc. 15th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: Tsentr. Nauchno-Issled. Inst. Elektropribor, 2008, pp. 145–154.

  23. Bolotin, Yu.V., Golikov, V.P., Larionov, S.V., and Trebukhov, A.V., A Calibration Algorithm for a Gimbaled Inertial Navigation System, Giroskop. Navigats., 2008, no. 3, pp. 13–27.

  24. Smolyak, S.A., On Optimal Restoration of Functions and Functionals of Functions, Cand. Sci. (Phys.–Math.) Dissertation, Moscow: Moscow State Univ., 1965.

  25. Marchuk, A.G. and Osipenko, L.Yu., Best Approximation of Functions Specified with an Error at a Finite Number of Points, Math. Notes, 1975, vol. 2, no. 3, pp. 204–212.

    MATH  Google Scholar 

  26. Milanese, M. and Tempo, R., Optimal Algorithms Theory for Robust Estimation and Prediction, IEEE Transact. Autom. Control, 1985, vol. AC-30, no. 8, pp. 730–743.

    Article  MathSciNet  MATH  Google Scholar 

  27. Matasov, A.I., On Optimality of Linear Guaranteed Estimation Algorithms I, II, Kosm. Issled., 1988, vol. 2, no. 5, pp. 643–653; no. 6, pp. 807–812.

  28. Ekeland, I. and Temam, R., Convex Analysis and Variational Problems, Amsterdam: North-Holland, 1976.

    MATH  Google Scholar 

  29. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Fizmatlit, 2007.

  30. Magaril-Il’yaev, G.G. and Tikhomirov, V.M., Vypuklyi analiz i ego prilozheniya (Convex Analysis and Its Applications), Moscow: Librokom, 2011.

  31. Horn, R.A. and Johnson, Ch.R., Matrix Analysis, Cambridge Univ. Press, 1985.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Matasov or H. Yin.

Additional information

This paper was recommended for publication by M.V. Khlebnikov, a member of the Editorial Board

APPENDIX

APPENDIX

We begin with proving the inequality \(\det \mathcal{H}\) ≠ 0 in (33). Let \({{\mathcal{H}}_{\delta }}\) be the numerical image of the matrix \(\mathcal{H}\): \({{\mathcal{H}}_{\delta }}\) = \(\mathcal{H}\) + \(\delta \mathcal{H}\). Also, let B denote the inverse of the matrix \(\mathcal{H}\) calculated approximately; the matrix B is precisely known. Then \(B{{\mathcal{H}}_{\delta }}\) + Δm = I + \(\Delta \mathcal{H}\), where Δm is the error matrix when multiplying the matrices B and \(\mathcal{H}\), and Δ\(\mathcal{H}\) is the known error characterizing the inversion accuracy. From these equalities it follows that

$$B\mathcal{H} = I + \Delta \mathcal{H} - \Delta m - B\delta \mathcal{H}.$$
(A.1)

Direct calculations of the matrix Δ\(\mathcal{H}\) show that its elements satisfy the inequality |(Δ\(\mathcal{H}\))ij| \(\leqslant \) 10–14, i, j = 1, …, 9. Let the elements Δm and δ\(\mathcal{H}\) obey the constraints

$$\left| {\Delta {{m}_{{ij}}}} \right|\;\leqslant \;\epsilon ,\quad \left| {\delta {{\mathcal{H}}_{{ij}}}} \right|\;\leqslant \;\epsilon ,\quad i,j = 1, \ldots ,9,\quad {\text{where}}\;\;\epsilon \ll 1.$$

Then \(\left| {{{{(B\delta \mathcal{H})}}_{{ij}}}} \right|\;\leqslant \;\epsilon \sum\nolimits_{s = 1}^9 {\left| {{{B}_{{is}}}} \right|} \) and, consequently,

$$\left| {{{{(\Delta \mathcal{H} - \Delta m - B\delta \mathcal{H})}}_{{ij}}}} \right|\;\leqslant \;{{10}^{{ - 14}}} + \epsilon \left[ {1 + \sum\limits_{s = 1}^9 {\left| {{{B}_{{is}}}} \right|} } \right]\quad i,j = 1, \ldots ,9.$$

The elements of the known matrix B belong to the intervals 0.1 < |Bij| < 12. Therefore, |(Δ\(\mathcal{H}\) – Δm\(B\delta \mathcal{H}\))ij| \(\leqslant \) 109\(\epsilon \) + 10–14. Assume that \(\epsilon \) \(\leqslant \) 10–5; this can be ensured by modern computing means. Then the matrix I + Δ\(\mathcal{H}\) – ΔmBδ\(\mathcal{H}\) in (A.1) is diagonally dominant and, hence, nonsingular by the Levy–Desplanques theorem [31]. As a result, the same property applies to the matrices \(\mathcal{H}\) and B.

Consider the case a = a(1). According to (A.1),

$$\Phi = {{\mathcal{H}}^{{ - 1}}}a = {{(I + \Delta \mathcal{H} - \Delta m - B\delta \mathcal{H})}^{{ - 1}}}Ba = (I + W)Ba = {{\Phi }_{{{\text{calc}}}}} + \Delta \Phi ,$$

where Φcalc = Ba is the calculated value of Φ, ΔΦ = WBa is the error of calculations, and

$$\left\| W \right\|\;\leqslant \;\frac{{\left\| {\Delta \mathcal{H} - \Delta m - B\delta \mathcal{H}} \right\|}}{{1 - \left\| {\Delta \mathcal{H} - \Delta m - B\delta \mathcal{H}} \right\|}},$$

with ||W|| standing for the spectral norm of W. Then ||ΔΦ|| \(\leqslant \) ||W|| ||Ba||, where ||ΔΦ|| and ||Ba|| are the Euclidean norms of the corresponding vectors. Obviously,

$$\left\| W \right\|\;\leqslant \;\frac{{{{{\left\| {\Delta \mathcal{H}} \right\|}}_{{\text{F}}}} + {{{\left\| {\Delta m + B\delta \mathcal{H}} \right\|}}_{{\text{F}}}}}}{{1 - {{{\left\| {\Delta \mathcal{H}} \right\|}}_{{\text{F}}}} - {{{\left\| {\Delta m + B\delta \mathcal{H}} \right\|}}_{{\text{F}}}}}};$$

here, the subscript F indicates the Frobenius norm as a majorant for the spectral norm. (It is more difficult to estimate the error of calculations for the spectral norm.) Therefore,

$$\left\| W \right\|\;\leqslant \;\frac{{3\epsilon R + {{{10}}^{{ - 13}}}}}{{1 - 3\epsilon R - {{{10}}^{{ - 13}}}}},\quad R = \sqrt {\sum\limits_{i = 1}^9 {{{{\left[ {1 + \sum\limits_{s = 1}^9 {\left| {{{B}_{{is}}}} \right|} } \right]}}^{2}}} } .$$

Let the accuracy of calculating the value R not exceed \(\epsilon \). In view of ||Ba|| \(\leqslant \) 16, we have

$$\left\| W \right\|\;\leqslant \;\frac{{429\epsilon + 3{{\epsilon }^{2}} + {{{10}}^{{ - 13}}}}}{{1 - (429\epsilon + 3{{\epsilon }^{2}} + {{{10}}^{{ - 13}}})}}\quad {\text{and}}\quad \left\| {\Delta \Phi } \right\|\;\leqslant \;\frac{{0.069 \times {{{10}}^{5}}\epsilon + 3{{\epsilon }^{2}} + 2 \times {{{10}}^{{ - 12}}}}}{{1 - (0.005 \times {{{10}}^{5}}\epsilon + 3{{\epsilon }^{2}} + {{{10}}^{{ - 12}}})}}.$$

Thus, ||ΔΦ|| \(\leqslant \) 0.07 for \(\epsilon \) = 10–5 and ||ΔΦ|| \(\leqslant \) 0.007 for \(\epsilon \) = 10–6.

Since the known elements of the vector Ba = Ba(1) are not less than 1.8 in absolute value, we have proved that approximate calculations surely establish the signs of the components of the vector Φ. For ν = 4 and ν = 7, the considerations are similar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matasov, A.I., Yin, H. Calibration of a 3D Sensor under Its Orientation Constraint. Autom Remote Control 84, 655–672 (2023). https://doi.org/10.1134/S0005117923060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923060085

Keywords:

Navigation