Skip to main content
Log in

Optimizing the Placement and Number of Measurement Points in Heating Process Control

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

In this paper, a heating process control law with steam supply is designed for a fluid in a heat exchanger. The process is described by a linear hyperbolic equation of the first order with a nonlocal boundary condition with a time-delayed argument. The temperature of the supplied steam is found as a linear dependence on fluid temperature values at measurement points in the heat exchanger. Explicit formulas are obtained for the gradient of the objective functional of the control problem in the space of the feedback coefficients (parameters) of this dependence. A numerical scheme is developed for determining the feedback parameters based on these formulas. Finally, an algorithm is proposed for determining the rational (optimal) number of measurement points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Ray, W.H., Advanced Process Control, McGraw-Hill, 1981.

    Google Scholar 

  2. Guliyev, S.Z., Synthesis of Zonal Controls for a Problem of Heating with Delay under Nonseparated Boundary Conditions, Cybern. Syst. Anal., 2018, vol. 54, no. 1, pp. 110–121.

    Article  MATH  Google Scholar 

  3. Aida-zade, K.R. and Abdullaev, V.M., On an Approach to Designing Control of the Distributed-Parameter Processes, Autom. Remote Control, 2012, vol. 73, no. 2, pp. 1443–1455.

    Article  MathSciNet  MATH  Google Scholar 

  4. Aida-zade, K.R. and Abdullayev, V.M., Optimizing Placement of the Control Points at Synthesis of the Heating Process Control, Autom. Remote Control, 2017, vol. 78, no. 9, pp. 1585–1599.

    Article  MathSciNet  MATH  Google Scholar 

  5. Aida-zade, K.R. and Abdullayev, V.M., Controlling the Heating of a Rod Using the Current and Preceding Time Feedback, Autom. Remote Control, 2022, vol. 83, no. 1, pp. 106–122.

    Article  MathSciNet  MATH  Google Scholar 

  6. Nakhushev, A.M., Nagruzhennye uravneniya i ikh primenenie (Loaded Equations and Their Application), Moscow: Nauka, 2012.

  7. Dzhenaliev, M.T., Optimal Control of Linear Loaded Parabolic Equations, Differ. Eq., 1989, vol. 25, no. 4, pp. 437–445.

    MathSciNet  MATH  Google Scholar 

  8. Abdullayev, V.M. and Aida-zade, K.R., Finite-Difference Methods for Solving Loaded Parabolic Equation, Comput. Math. Math. Phys., 2016, vol. 56, no. 1, pp. 93–105.

    Article  MathSciNet  MATH  Google Scholar 

  9. Abdullayev, V.M. and Aida-zade, K.R., Approach to the Numerical Solution of Optimal Control Problems for Loaded Differential Equations with Nonlocal Conditions, Comput. Math. Math. Phys., 2019, vol. 59, no. 5, pp. 696–707.

    Article  MathSciNet  MATH  Google Scholar 

  10. Butkovskii, A.G., Metody upravleniya sistemami s raspredelennymi parametrami (Control Methods for Distributed Parameter Systems), Moscow: Nauka, 1984.

  11. Egorov, A.I., Osnovy teorii upravleniya (Fundamentals of Control Theory), Moscow: Fizmatlit, 2004.

  12. Shang, H., Forbes, J.F., and Guay, M., Feedback Control of Hyperbolic PDE Systems, IFAC Proceedings Volumes, 2000, vol. 33, no. 10, pp. 533–538.

  13. Coron, J.M. and Wang, Zh., Output Feedback Stabilization for a Scalar Conservation Law with a Nonlocal Velocity, SIAM J. Math. Anal., 2013, vol. 45, no. 5, pp. 2646–2665.

    Article  MathSciNet  MATH  Google Scholar 

  14. Afifi, L., Lasri, K., Joundi, M., and Amimi, N., Feedback Controls for Exact Remediability in Disturbed Dynamical Systems, IMA Journal of Mathematical Control and Information, 2018, vol. 35, no. 2, pp. 411–425.

    MathSciNet  MATH  Google Scholar 

  15. Aida-zade, K.R., Hashimov, V.A., and Bagirov, A.H., On a Problem of Synthesis of Control of Power of the Moving Sources on Heating of a Rod, Proceedings of the Institute of Mathematics and Mechanics, NAS of Azerbaijan, 2021, vol. 47, no. 1, pp. 183–196.

  16. Aida-zade, K.R. and Hashimov, V.A., Optimization of Measurement Points Positioning in a Border Control Synthesis Problem for the Process of Heating a Rod, Autom. Remote Control, 2018, vol. 79, no. 9, pp. 1643–1660.

    Article  MathSciNet  MATH  Google Scholar 

  17. Abdullayev, V.M. and Aida-zade, K.R., Optimization of Loading Places and Load Response Functions for Stationary Systems, Comput. Math. Math. Phys., 2017, vol. 57, no. 4, pp. 634–644.

    Article  MathSciNet  MATH  Google Scholar 

  18. Mitkowski, W., Bauer, W., and Zag’orowska, M., Discrete-Time Feedback Stabilization, Archives of Control Sciences, 2017, vol. 27, no. 2, pp. 309–322.

    Article  MathSciNet  MATH  Google Scholar 

  19. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

  20. Polyak, B.T., Khlebnikov, M.V., and Rapoport, L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya (Mathematical Automatic Control Theory), Moscow: LENAND, 2019.

  21. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems under Exogenous Disturbances: The Technique of Linear Matrix Inequalities), Moscow: LENAND, 2014.

  22. Akhmetzyanov, A.V., Computational Aspects in Controlling Filtration of Fluids and Gases in Porous Media, Autom. Remote Control, 2008, vol. 69, no. 1, pp. 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  23. Akhmetzyanov, A.V. and Kulibanov, V.N., Problems of the Optimal Control of the Filtration of Ground Waters, Autom. Remote Control, 1999, vol. 60, no. 8, pp. 1097–1105.

    MathSciNet  MATH  Google Scholar 

  24. Lions, J.L., Optimal Control of Systems Governed by Partial Differential Equations, Berlin–Heidelberg: Springer, 1971.

    Book  MATH  Google Scholar 

  25. Vasil’ev, F.P., Metody optimizatsii (Optimization Methods), Moscow: Faktorial Press, 2008.

  26. Polyak, B.T., Vvedeniye v optimizatsiyu (Introduction to Optimization), 2nd ed., Moscow: LENAND, 2014.

  27. Elsgolts, L.E. and Norkin, S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, New York: Academic Press, 1973.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Prof. K.R. Aida-zade, Corresponding Member of the National Academy of Sciences of Azerbaijan, for careful reading of the manuscript and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Abdullayev.

Additional information

This paper was recommended for publication by M.V. Khlebnikov, a member of the Editorial Board

APPENDIX

APPENDIX

Proof of Theorem 1. Explicit formulas expressing the increment of the objective functional through the increments of its optimized arguments can be obtained using the well-known method [25]. The linear part of the increment of the functional in each argument is the required component of its gradient with respect to the corresponding argument.

First of all, note the following. The initial fluid temperature φ ⊂ Φ and the heat loss coefficient γ ∈ Γ are mutually independent and do not depend on the heating process in the heat exchanger. Hence, from (2.11) and (2.12) it follows that

$$\begin{aligned} \operatorname{grad} J({\mathbf{P}}) = \operatorname{grad} \int\limits_\Phi {\int\limits_\Gamma {I({\mathbf{P}};\,\,\varphi ,\,\,\gamma ){{\rho }_{\Gamma }}(\gamma ){{\rho }_{\Phi }}(\varphi )d\gamma } d\varphi } \\ = \int\limits_\Phi {\int\limits_\Gamma {\operatorname{grad} I({\mathbf{P}};\,\,\varphi ,\,\,\gamma ){{\rho }_{\Gamma }}(\gamma ){{\rho }_{\Phi }}(\varphi )d\gamma } d\varphi } , \\ \end{aligned} $$
(A.1)

where

$$I({\mathbf{P}};\,\,\varphi ,\,\,\gamma ) = \int\limits_{{{t}_{b}}}^{{{t}_{f}}} {{{{[T(L,\,\,t;\,\,{\mathbf{P}},\,\,\varphi ,\,\,\gamma ) - V]}}^{2}}dt} + \varepsilon {{\left\| {{\mathbf{P}} - {\mathbf{\tilde {P}}}} \right\|}_{{{{\mathbb{R}}^{{3N}}}}}}.$$

Therefore, the formula for grad I(P; φ, γ) will be derived under arbitrary admissible feedback parameters P, heat loss coefficient γ ∈ Γ, and initial condition T(x, t) = φ, t \(\leqslant \) 0.

Let T(x, t; P, φ, γ) be the solution of the loaded initial boundary-value problem (2.12), (2.3), and (2.5) under arbitrarily chosen optimized parameter vector P = (μ, α, β)', initial condition φ ∈ Φ and heat loss coefficient γ ∈ Γ. For brevity, whenever no confusion occurs, the parameters P, φ, γ of the solution T(x, t; P, φ, γ) will be omitted.

Consider an admissible increment ΔP = (Δμ, Δα, Δβ)' of the parameters P = (μ, α, β)' and let \(\tilde {T}\)(x, t) = \(\tilde {T}\)(x, t; \({\mathbf{\tilde {P}}}\), φ, γ) = T(x, t) + ΔT(x, t) be the solution of problem (2.12), (2.3), and (2.5) that corresponds to the incremental argument vector \({\mathbf{\tilde {P}}}\) = P + ΔP.

Substituting the function \(\tilde {T}\)(x, t) into conditions (2.12), (2.3), and (2.5) gives the initial boundary-value problem

$$\begin{gathered} \Delta {{T}_{t}}(x,\,\,t) + \vartheta \Delta {{T}_{x}}(x,\,\,t) = \lambda \sum\limits_{i = 1}^N {\left[ {{{\alpha }_{i}}\Delta T({{\mu }_{i}},\,\,t) + {{\alpha }_{i}}{{T}_{x}}({{\mu }_{i}},\,\,t)\Delta {{\mu }_{i}}} \right.} \\ \left. { + \;(T({{\mu }_{i}},\,\,t) - {{\beta }_{i}})\Delta {{\alpha }_{i}} - {{\alpha }_{i}}\Delta {{\beta }_{i}}} \right] - \lambda \Delta T(x,\,\,t),\quad (x,\,\,t) \in \Omega , \\ \end{gathered} $$
(A.2)
$$\Delta T(x,\,\,0) = 0,\quad x \in [0,\,\,l],$$
(A.3)
$$\Delta T(0,\,\,t) = \left\{ {\begin{array}{*{20}{l}} {0,}&{t\;\leqslant \;\tau } \\ {(1 - \gamma )\Delta T(L,\,\,t - \tau ),\;\;}&{t\; \geqslant \;\tau ,} \end{array}} \right.$$
(A.4)

where the accuracy is within the terms of the first order of smallness with respect to the increment ΔT(x, t) of the state variable. Formula (A.2) involves the relation

$$T({{\mu }_{i}} + \Delta {{\mu }_{i}},\,\,t) = T({{\mu }_{i}},\,\,t) + {{T}_{x}}({{\mu }_{i}},\,\,t)\Delta {{\mu }_{i}} + o\left( {\left| {\Delta {{\mu }_{i}}} \right|} \right).$$

The increment of the functional (2.12) can be easily represented as

$$\Delta I({\mathbf{P}};\,\,\varphi ,\,\,\gamma ) = I({\mathbf{\tilde {P}}};\,\,\varphi ,\,\,\gamma ) - I({\mathbf{P}};\,\,\varphi ,\,\,\gamma ) = I({\mathbf{P}} + \Delta {\mathbf{P}};\,\,\varphi ,\,\,\gamma ) - I({\mathbf{P}};\,\,\varphi ,\,\,\gamma )$$
$$ = 2\int\limits_{{{t}_{b}}}^{{{t}_{f}}} {[T(L,\,\,t;\,\,{\mathbf{P}},\,\,\varphi ,\,\,\gamma ) - V]\Delta T(L,\,\,t)dt} + 2\sigma \sum\limits_{i = 1}^{3N} {({{{\mathbf{P}}}_{i}} - {{{{\mathbf{\tilde {P}}}}}_{i}})\Delta {{{\mathbf{P}}}_{i}},} $$
$$\sum\limits_{i = 1}^{3N} {({{{\mathbf{P}}}_{i}} - {{{{\mathbf{\tilde {P}}}}}_{i}})\Delta {{{\mathbf{P}}}_{i}}} = \sum\limits_{i = 1}^{3N} {\left[ {({{\mu }_{i}} - {{{\tilde {\mu }}}_{i}})\Delta {{\mu }_{i}} + ({{\alpha }_{i}} - {{{\tilde {\alpha }}}_{i}})\Delta {{\alpha }_{i}} + ({{\beta }_{i}} - {{{\tilde {\beta }}}_{i}})\Delta {{\beta }_{i}}} \right].} $$

Let ψ(x, t; P, φ, γ) be an arbitrary (so far) function that is continuous everywhere in Ω except the points x = μi, i = 1, 2, …, N, differentiable with respect to x for x ∈ (μi, μi + 1), i = 0, 1, …, N, μ0 = 0, μN + 1 = L, and differentiable with respect to t for t ∈ (0, T). The arguments P, φ, and γ of the function ψ(x, t; P, φ, γ) indicate its possible change when varying the feedback parameter vector P, the initial temperature φ, and the heat loss coefficient γ. Whenever possible, P, φ, and γ will be omitted for the function ψ(x, t; P, φ, γ). Under the accepted assumptions and conditions (A.3) and (A.4), integrating Eq. (A.2) with the factor ψ(x, t) along the rectangle Ω gives

$$\int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\psi (x,\,\,t)\Delta {{T}_{t}}(x,\,\,t)dxdt} } + \vartheta \sum\limits_{i = 0}^N {\int\limits_{{{\mu }_{i}}}^{{{\mu }_{{i + 1}}}} {\int\limits_0^{{{t}_{f}}} {\psi (x,\,\,t)\Delta {{T}_{x}}(x,\,\,t)dtdx} } } $$
$$ - \;\lambda \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\psi (x,\,\,t)\sum\limits_{i = 1}^N {\left[ {{{\alpha }_{i}}\Delta T({{\mu }_{i}},\,\,t) + {{\alpha }_{i}}{{T}_{x}}({{\mu }_{i}},\,\,t)\Delta {{\mu }_{i}}} \right.} } } $$
(A.5)
$$\left. { + \;(T({{\mu }_{i}},\,\,t) - {{\beta }_{i}})\Delta {{\alpha }_{i}} - {{\alpha }_{i}}\Delta {{\beta }_{i}}} \right]dxdt + \lambda \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\psi (x,\,\,t)\Delta T(x,\,\,t)dxdt} } = 0.$$

In view of (A.3)–(A.5), we integrate by parts the first and second terms in (A.5) separately to get

$$\begin{gathered} \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\psi (x,\,\,t)\Delta {{T}_{t}}(x,\,\,t)dxdt} } = \int\limits_0^L {\psi (x,\,\,{{t}_{f}})\Delta T(x,\,\,{{t}_{f}})dx} \\ + \;\int\limits_0^L {\left[ {\psi (x,\,\,t_{b}^{ - }) - \psi (x,\,\,t_{b}^{ + })} \right]\Delta T(x,\,\,{{t}_{b}})dx} - \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {{{\psi }_{t}}(x,\,\,t)\Delta T(x,\,\,t)dxdt} } , \\ \end{gathered} $$
(A.6)
$$\vartheta \sum\limits_{i = 0}^N {\int\limits_{{{\mu }_{i}}}^{{{\mu }_{{i + 1}}}} {\int\limits_0^{{{t}_{f}}} {\psi (x,\,\,t)\Delta {{T}_{x}}(x,\,\,t)dtdx} } } = \vartheta \int\limits_0^{{{t}_{f}}} {[\psi (l,\,\,t)\Delta T(L,\,\,t) - \psi (0,\,\,t)\Delta T(0,\,\,t)]dt} $$
$$ + \;\vartheta \sum\limits_{i = 1}^N {\int\limits_0^{{{t}_{f}}} {\left[ {\psi (\mu _{i}^{ - },\,\,t) - \psi (\mu _{i}^{ + },\,\,t)} \right]\Delta T({{\mu }_{i}},\,\,t)dt} } - \vartheta \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {{{\psi }_{x}}(x,\,\,t)\Delta T(x,\,\,t)dxdt} } $$
$$\begin{gathered} = \vartheta \int\limits_0^{{{t}_{f}}} {\psi (L,\,\,t)\Delta T(L,\,\,t)dt} - \vartheta (1 - \gamma )\int\limits_\tau ^{{{t}_{f}}} {\psi (0,\,\,t)\Delta T(L,\,\,t - \tau )dt} \\ + \;a\sum\limits_{i = 1}^N {\int\limits_0^{{{t}_{f}}} {\left[ {\psi (\mu _{i}^{ - },\,\,t) - \psi (\mu _{i}^{ + },\,\,t)} \right]\Delta T({{\mu }_{i}},\,\,t)dt} } - \vartheta \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {{{\psi }_{x}}(x,\,\,t)\Delta T(x,\,\,t)dxdt} } \\ \end{gathered} $$
(A.7)
$$ = \vartheta \int\limits_0^{{{t}_{f}}} {\psi (L,\,\,t)\Delta T(L,\,\,t)dt} - \vartheta (1 - \gamma )\int\limits_0^{{{t}_{f}} - \tau } {\psi (0,\,\,t + \tau )\Delta T(L,\,\,t)dt} $$
$$ + \;\vartheta \sum\limits_{i = 1}^N {\int\limits_0^{{{t}_{f}}} {\left[ {\psi (\mu _{i}^{ - },t) - \psi (\mu _{i}^{ + },t)} \right]\Delta T({{\mu }_{i}},t)dt} } - \vartheta \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {{{\psi }_{x}}(x,t)\Delta T(x,t)dxdt.} } $$

In these formulas,

$$\psi (\mu _{i}^{ - },\,\,t) = \psi ({{\mu }_{i}} - 0,\,\,t),\quad \psi (\mu _{i}^{ + },\,\,t) = \psi ({{\mu }_{i}} + 0,\,\,t).$$

Considering (A.5)–(A.7), the increment of the objective functional takes the form

$$\Delta I = \int\limits_0^L {\psi (x,\,\,{{t}_{f}})\Delta T(x,\,\,{{t}_{f}})dx} + \int\limits_{{{t}_{f}} - \tau }^{{{t}_{f}}} {[\vartheta \psi (L,\,\,t) + 2(T(L,\,\,t) - V)]\Delta T(L,\,\,t)dt} $$
$$ + \;\int\limits_{{{t}_{k}}}^{{{t}_{f}} - \tau } {[\vartheta \psi (L,\,\,t) + \lambda (1 - \gamma )\psi (0,\,\,t + \tau ) + 2(T(L,\,\,t) - V)]\Delta T(L,\,\,t)dt} $$
$$ + \;\int\limits_0^{{{t}_{b}}} {[\vartheta \psi (L,\,\,t) + \lambda (1 - \gamma )\psi (0,\,\,t + \tau )]\Delta T(L,\,\,t)dt} $$
$$ + \;\int\limits_0^{{{t}_{f}}} {\int\limits_0^L {[ - {{\psi }_{t}}(x,\,\,t) - \vartheta {{\psi }_{x}}(x,\,\,t) + \lambda \psi (x,\,\,t)]\Delta T(x,\,\,t)dxdt} } $$
(A.8)
$$ + \;a\sum\limits_{i = 1}^N {\int\limits_0^{{{t}_{f}}} {\left[ {\psi (\mu _{i}^{ - },\,\,t) - \psi (\mu _{i}^{ + },\,\,t) - \frac{\lambda }{\vartheta }{{\alpha }_{i}}\int\limits_0^L {\psi (x,\,\,t)dx} } \right]\Delta T({{\mu }_{i}},\,\,t)dt} } $$
$$ - \;\lambda \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\psi (x,\,\,t)\sum\limits_{i = 1}^N {[{{\alpha }_{i}}{{T}_{x}}({{\mu }_{i}},\,\,t)\Delta {{\mu }_{i}} + (T({{\mu }_{i}},\,\,t) - {{\beta }_{i}})\Delta {{\alpha }_{i}} - {{\alpha }_{i}}\Delta {{\beta }_{i}}]dxdt} } } $$
$$ + \;2\sigma \sum\limits_{i = 1}^N {\left[ {({{\mu }_{i}} - {{{\tilde {\mu }}}_{i}})\Delta {{\xi }_{i}} - ({{\alpha }_{i}} - {{{\tilde {\alpha }}}_{i}})\Delta {{\alpha }_{i}} + ({{\beta }_{i}} - {{{\tilde {\beta }}}_{i}})\Delta {{\beta }_{i}}} \right].} $$

Since the function ψ(x, t) is arbitrary, let it be the solution of the initial boundary-value problem (3.5)–(3.9) almost everywhere.

Recall that the components of the gradient of the functional are determined by the linear part of its increment with respect to the increments of the corresponding arguments. Consequently,

$$\begin{aligned} {{\operatorname{grad} }_{{{{\mu }_{i}}}}}I = - \lambda {{\alpha }_{i}}\int\limits_0^{{{t}_{f}}} {\left( {\int\limits_0^L {\psi (x,\,\,t)dx} } \right){{T}_{x}}({{\mu }_{i}},\,\,t)dt} + 2\sigma ({{\mu }_{i}} - {{{\tilde {\mu }}}_{i}}), \\ i = 1,\,\,2,\,\, \ldots ,\,\,N, \\ \end{aligned} $$
(A.9)
$$\begin{aligned} {{\operatorname{grad} }_{{{{\alpha }_{i}}}}}I = - \lambda \int\limits_0^{{{t}_{b}}} {(T({{\mu }_{i}},\,\,t) - {{\beta }_{i}})\left( {\int\limits_0^L {\psi (x,\,\,t)dx} } \right)dt} + 2\sigma ({{\alpha }_{i}} - {{{\tilde {\alpha }}}_{i}}), \\ i = 1,\,\,2,\,\, \ldots ,\,\,N, \\ \end{aligned} $$
(A.10)
$${{\operatorname{grad} }_{{{{\beta }_{i}}}}}I = \lambda {{\alpha }_{i}}\int\limits_0^L {\psi (x,\,\,t)dx} + 2\sigma ({{\beta }_{i}} - {{\tilde {\beta }}_{i}}),\quad i = 1,\,\,2,\,\, \ldots ,\,\,N.$$
(A.11)

The proof of this theorem is complete.

It remains to obtain the adjoint initial boundary-value problem in the form (3.10) equivalent to (3.5)–(3.9) but without the jump conditions (3.9). Based on the property of the δ-function, the third term in (A.5) can be written as

$$\lambda \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\psi (x,\,\,t)\sum\limits_{i = 1}^N {({{\alpha }_{i}}\Delta T({{\mu }_{i}},\,\,t) + {{\alpha }_{i}}{{T}_{x}}({{\mu }_{i}},\,\,t)\Delta {{\mu }_{i}} + (T({{\mu }_{i}},\,\,t) - {{\beta }_{i}})\Delta {{\alpha }_{i}} - {{\alpha }_{i}}\Delta {{\beta }_{i}})dxdt} } } $$
$$ = \lambda \sum\limits_{i = 1}^N {{{\alpha }_{i}}\int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\int\limits_0^L {\psi (\zeta ,t)\delta (\zeta - {{\mu }_{i}})\Delta T(\zeta ,t)d\zeta dxdt} } } } $$
$$ + \;\lambda \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\psi (x,t)\sum\limits_{i = 1}^N {({{\alpha }_{i}}{{T}_{x}}({{\mu }_{i}},t)\Delta {{\mu }_{i}} + (T({{\mu }_{i}},t) - {{\beta }_{i}})\Delta {{\alpha }_{i}} - {{\alpha }_{i}}\Delta {{\beta }_{i}})dxdt.} } } $$

Now we change the order of integration over ζ and x in the first triple integral and swap the names of these variables to obtain

$$\int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\int\limits_0^L {\psi (\zeta ,\,\,t)\delta (\zeta - {{\mu }_{i}})\Delta T(\zeta ,\,\,t)d\zeta dxdt} } } = \int\limits_0^{{{t}_{f}}} {\int\limits_0^L {\left( {\int\limits_0^L {\psi (\zeta ,\,\,t)d\zeta } } \right)\delta (x - {{\mu }_{i}})\Delta T(x,\,\,t)dxdt.} } $$
(A.12)

In formula (A.5), we regroup the terms and, using (A.12), finally arrive from (3.5) and (3.8) at the integro-differential Eq. (3.12) for the adjoint problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullayev, V.M. Optimizing the Placement and Number of Measurement Points in Heating Process Control. Autom Remote Control 84, 641–654 (2023). https://doi.org/10.1134/S0005117923060024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923060024

Keywords:

Navigation