Skip to main content
Log in

Stabilization of Oscillations of a Controlled Autonomous System

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract—

We consider a smooth autonomous system in general form that admits a non-degenerate periodic solution. A global family (with respect to the parameter h) of nondegenerate periodic solutions is constructed, the law of monotonic variation of the period on the family is derived, and the existence of a reduced second-order system is proved. For it, the problem of stabilizing the oscillation of the controlled system, distinguished by the value of the parameter h, is solved. A smooth autonomous control is found, and an attracting cycle is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Reviewer’s comment.

REFERENCES

  1. Pontryagin, L.S., On Dynamic Systems Close to Hamiltonian, J. Exp. i Teor. Fiz., 1934, vol. 4, no. 9, pp. 883–885.

    Google Scholar 

  2. Tkhai, V.N., Stabilizing the Oscillations of a Controlled Mechanical System, Autom. Remote Control, 2019, vol. 80, no. 11, pp. 1996–2004.

    Article  MathSciNet  MATH  Google Scholar 

  3. Tkhai, V.N., Stabilizing the Oscillations of an N Degree of Freedom Controlled Mechanical System, Autom. Remote Control, 2020, vol. 81, no. 9, pp. 1637–1646.

    Article  MathSciNet  MATH  Google Scholar 

  4. Tkhai, V.N., Stabilization of Oscillations of a Controlled Reversible Mechanical System, Autom. Remote Control, 2022, vol. 83, no. 9.

  5. Tkhai, V.N., Cycle Mode in a Coupled Conservative System, Autom. Remote Control, 2022, vol. 83, no. 2, pp. 237–251.

    Article  MathSciNet  MATH  Google Scholar 

  6. Tkhai, V.N., Mechatronic Cheme for Stabilization of Oscillations, Izv. RAN. Teor. i Sist. Uprav., 2022, no. 1, pp. 9–16.

  7. Boubaker, O., The Inverted Pendulum Benchmark in Nonlinear Control Theory: A Survey, Int. J. Adv. Robot. Syst., 2013, vol. 10, no. 5, pp. 233–242.

    Article  Google Scholar 

  8. Fradkov, A.L., Swinging Control of Nonlinear Oscillations, Int. J. Control, 1996, vol. 64, no. 6, pp. 1189–1202.

    Article  MathSciNet  MATH  Google Scholar 

  9. Shiriaev, A., Perram, J.W., and Canudas-de-Wit, C., Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach, IEEE T. Automat. Contr., 2005, vol. 50, no. 8, pp. 1164–1176.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kant, K., Mukherjee, R., and Khalil, H., Stabilization of Energy Level Sets of Underactuated Mechanical Systems Exploiting Impulsive Braking, Nonlinear Dynam., 2021, vol. 106, pp. 279–293.

    Article  Google Scholar 

  11. Guo, Yu., Hou, B., Xu, Sh., Mei, R.,Wang, Z., and Huynh, V.Th., Robust Stabilizing Control for Oscillatory Base Manipulators by Implicit Lyapunov Method, Nonlinear Dynam., 2022, vol. 108, pp. 2245–226.

    Article  Google Scholar 

  12. Zevin, A.A., Nonlocal Generalization of Lyapunov Theorem, Nonlinear Analysis, Theory, Methods and Applications, 1997, vol. 28, no. 9, pp. 1499–1507.

    MATH  Google Scholar 

  13. Zevin, A.A., Global Continuation of Lyapunov Centre Orbits in Hamiltonian Systems, Nonlinearity, 1999, vol. 12, pp. 1339–1349.

    Article  MathSciNet  MATH  Google Scholar 

  14. Tkhai, V.N., Equilibria and Oscillations in a Reversible Mechanical System, Vestnik SPbSU. Mathematics. Mechanics. Astronomy, 2021, vol. 54, no. 4, pp. 447–451. https://doi.org/10.1134/S1063454121040191

    Article  MATH  Google Scholar 

  15. Tkhai, V.N., Spatial Oscillations of a Physical Pendulum, Proc. 2022 16th Int. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference), IEEE Xplore: June 29, 2022. https://ieeexplore.ieee.org/document/9807507 https://doi.org/10.1109/STAB54858.2022.9807507

  16. Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Nauka, 1974.

  17. Tkhai, V.N., Law of Dependence of Non-Linear Oscillation Period on a Single Parameter, Prikl. Mat. Mekh., vol. 75, no. 3, pp. 430–434.

  18. Malkin, I.G., Nekotorye zadachi teorii nelineinykh kolebanii (Certain Problems of Non-Linear Oscillation Theory), Moscow: Gostekhizdat, 1956.

  19. Devaney, R.L., Blue Sky Catastrophes in Reversible and Hamiltonian Systems, Indiana University Mathematics Journal, 1977, vol. 26, no. 2, pp. 247–263.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tkhai V.N., Stabilizing the Oscillations of an Autonomous System, Autom. Remote Control, 2016, vol. 77, no. 6, pp. 972–979.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tkhai.

Additional information

This paper was recommended for publication A.M. Krasnosel’skii, a member of the Editorial Board

APPENDIX

APPENDIX

Reduction of a homogeneous system.

We set down the variation equations for the solution (6) as

$$\begin{gathered} \delta \dot {x} = \frac{{\partial X(x,y)}}{{\partial x}}\delta x + \frac{{\partial X(x,y)}}{{\partial y}}\delta y, \\ \delta \dot {y} = \frac{{\partial Y(x,y)}}{{\partial x}}\delta x + \frac{{\partial Y(x,y)}}{{\partial y}}\delta y, \\ \end{gathered} $$
(A.1)

where the partial derivatives are calculated for x = φ(h, t), y = ψ(h, t).

The following matrix gives the fundamental system of solutions in (A.1):

$$\left\| {\begin{array}{*{20}{c}} {\frac{{\partial \varphi (h,t)}}{{\partial t}}}&{\frac{{\partial \varphi (h,t)}}{{\partial h}}} \\ {\frac{{\partial \psi (h,t)}}{{\partial t}}}&{\frac{{\partial \psi (h,t)}}{{\partial h}}} \end{array}} \right\|$$
(A.2)

with the determinant

$$\Delta (h,t) = \Delta (h,0)\exp \int\limits_0^t {\left( {\frac{{\partial X(x,y)}}{{\partial x}} + \frac{{\partial Y(x,y)}}{{\partial y}}} \right)} d\tau .$$

We set down the general solution of the system in (A.1)

$$\begin{gathered} \delta x = {{c}_{1}}\dot {\varphi }(h,\,\,t) + {{c}_{2}}\varphi '(h,\,\,t), \\ \delta y = {{c}_{1}}\dot {\psi }(h,\,\,t) + {{c}_{2}}\psi '(h,\,\,t) \\ \end{gathered} $$
(A.3)

with constants c1 and c2. We use resolution of the system (A.3) with regard to c1 and c2 to transition to new variables u, \({v}\):

$$u = - (\dot {\psi }\delta x - \dot {\varphi }\delta y){\text{/}}\Delta ,\quad {v} = [\eta (h,\,\,t)\delta x - \xi (h,\,\,t)\delta y]{\text{/}}\Delta .$$
(A.4)

At the same time we assume

$$\xi (h,t) = \frac{{T'(h)}}{{T{\text{*}}}}t\dot {\varphi }(h,\,\,t) + \frac{{\partial \varphi (h,\,\,t)}}{{\partial h}},$$
$$\eta (h,t) = \frac{{T'(h)}}{{T{\text{*}}}}t\dot {\psi }(h,\,\,t) + \frac{{\partial \psi (h,\,\,t)}}{{\partial h}},$$

where the functions ξ(h*, t), η(h*, t) would be T *-periodic. Finally, we obtain the following from the expression for \({v}\) in (A.4):

$${v} = \frac{{T'(h)}}{{T{\text{*}}}}tu + (\psi '(h,\,\,t)\delta x - \varphi '(h,\,\,t)\delta y){\text{/}}\Delta {\kern 1pt} {\kern 1pt} .$$
(A.5)

We substitute the first solution into formulas (A.4) and (A.5) and calculate u = 0, \({v}\) = 1. Correspondingly, we set down the following for the second solution:

$$u = - (\dot {\psi }\varphi {\kern 1pt} '\, - \dot {\varphi }\psi {\kern 1pt} '){\text{/}}\Delta = 1,\quad {v} = \frac{{T'(h{\text{*}})}}{{T{\text{*}}}}tu + u.$$

Therefore, we transition the system (A.1) to the following form:

$$\dot {u} = 0,\quad {\dot {v}} = \frac{{T'(h{\text{*}})}}{{T{\text{*}}}}u.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkhai, V.N. Stabilization of Oscillations of a Controlled Autonomous System. Autom Remote Control 84, 476–485 (2023). https://doi.org/10.1134/S0005117923050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923050089

Keywords:

Navigation