Skip to main content
Log in

On the Properties of Orthogonal Projection Method for Reaching Consensus

  • LINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The article is devoted to an asymptotic behavior of a multi-agent system with information links. We proved that the orthogonal projection method proposed for the regularization of the consensus protocol is characterized by a pseudoinverse matrix for the introduced auxiliary matrix for an arbitrary communication digraph of a multi-agent system. We cosidered the eigenprojection of the Laplacian matrix corresponding to the communication digraph, in which the influences on the fixed agent change proportionally. We obtained a number of results that are of independent importance and can be used in models of multi-agent systems with different protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. When listing row or column numbers a comma is not put between the indices. In some papers, A\(\left( \begin{gathered} \alpha \\ \beta \\ \end{gathered} \right)\) denotes the minor of a submatrix.

REFERENCES

  1. Olfati-Saber, R., Fax, J.A., and Murray, R.M., Consensus and Cooperation in Networked Multi-Agent Systems, Proceedings of the IEEE, 2007, vol. 95, no. 1, pp. 215–233.

    Article  MATH  Google Scholar 

  2. Jadbabaie, A., Lin, J., and Morse, A.S., Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules, IEEE Transactions on Automatic Control, 2003, vol. 48, no. 6, pp. 988–1001.

    Article  MathSciNet  MATH  Google Scholar 

  3. Olfati-Saber, R.M. and Murray, R.M., Consensus Problems in Networks of Agents with Switching Topology and Time-Delays, IEEE Trans. Automat. Control, 2004, vol. 49, no. 9, pp. 1520–1533.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ren, W., Beard, R.W., and Atkins, E.M., Information Consensus in Multivehicle Cooperative Control, IEEE Control Systems Magazine, 2007, vol. 27, no. 2, pp. 71–82.

    Article  Google Scholar 

  5. Mesbahi, M. and Egerstedt, M., Graph Theoretic Methods in Multiagent Networks, in Graph Theoretic Methods in Multiagent Networks, Princeton University Press, 2010.

    Book  MATH  Google Scholar 

  6. Chebotarev, P. and Agaev, R., The Forest Consensus Theorem, IEEE Trans. Automat. Control, 2014, vol. 59, no. 9, pp. 2475–2479.

    Article  MathSciNet  MATH  Google Scholar 

  7. Agaev, R. and Chebotarev, P., Models of Latent Consensus, Autom. Remote Control, 2017, vol. 78, no. 1, pp. 88–99. https://doi.org/10.1134/S0005117917010076

    Article  MathSciNet  MATH  Google Scholar 

  8. Agaev, R.P., On the Role of the Eigenprojection of the Laplacian Matrix for Reaching Consensus in Multiagent Second-Order Systems, Autom. Remote Control, 2019, vol. 80, no. 11, pp. 2033–2042.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gantmakher, F., Matrix Theory, Moscow: Nauka, 1967.

    Google Scholar 

  10. Agaev, R. and Chebotarev, P., The Projection Method for Reaching Consensus and the Regularized Power Limit of a Stochastic Matrix, Autom. Remote Control, 2011, vol. 72, no. 12, pp. 2458–2476. https://doi.org/10.1134/S0005117911120034

    Article  MathSciNet  MATH  Google Scholar 

  11. Agaev, R. and Khomutov, D., Graph Interpretation of the Method of Orthogonal Projection for Regularization in Multiagent Systems, 14th International Conference “Management of Large-scale System Development” (MLSD), IEEE, 2021, pp. 1–4.

  12. Rothblum, G., Computation of the Eigenprojection of a Nonnegative Matrix at Its Spectral Radius, in Stochastic Systems: Modeling, Identification and Optimization, II, Berlin, Heidelberg: Springer, 1976, pp. 188–201.

    Google Scholar 

  13. Horn, R. and Johnson, C., Matrix Analysis, Moscow, Mir, 1989.

  14. Ben-Israel, A. and Greville, T.N.E., Generalized Inverses: Theory and Applications, 2nd ed., Springer, 2003.

    MATH  Google Scholar 

  15. Fiedler, M. and Sedláček, J.O., W-Basich Orientovanych Grafu, Časopis pro pěstování matematiky, 1958, vol. 83, no. 2, pp. 214–225.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. P. Agaev or D. K. Khomutov.

Additional information

This paper was recommended for publication M.V. Gubko, a member of the Editorial Board

APPENDIX

APPENDIX

Proof of Proposition 2. (1) The matrix U has the following form:

$$U = \left( {\begin{array}{*{20}{c}} 1&{{{l}_{{12}}}}& \cdots &{{{l}_{{1k'}}}}&{{{{\mathbf{0}}}_{{1,n - k}}}} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1&{{{l}_{{k2}}}}& \cdots &{{{l}_{{kk'}}}}&{{{{\mathbf{0}}}_{{1,n - k}}}} \\ {{{{\mathbf{1}}}_{{n - k,1}}}}&*&*&*&{{{L}_{R}}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1&{{{U}_{1}}}&{}&{} \\ 1& \ddots &{}&{} \\ \vdots &{}&{{{U}_{{v}}}}&{} \\ {{{{\mathbf{1}}}_{{n - k,1}}}}&*&*&{{{L}_{R}}} \end{array}} \right),$$

where k' = k\({v}\) + 1, k = \(\sum\nolimits_{i = 1}^{v} {{{m}_{i}}} \) (\({v}\) is a number of basic bicomponents), and the matrix LR is square and nonsingular. Assume that the mentioned minor was obtained by deleting rows among which there is at least one row with a number from the set {k + 1, …, n}. Then the submatrix U\(\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\) will have a block-triangular form, and its right lower square block LR'  contains a zero row. Therefore det LR' = 0 and det U\(\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\) = 0.

(2) Let the set {i2, …, ir} contain all vertices {  j1, …, \({{j}_{{{{m}_{s}}}}}\)} of one sth basic bicomponent. Then the submatrix with rows {j1, …, \({{j}_{{{{m}_{s}}}}}\)} contains ms – 1 nonzero columns. The minor detU\(\left( \begin{gathered} {{i}_{2}}...{{i}_{r}} \\ 2...r \\ \end{gathered} \right)\) consists of terms, each of which is the product of r – 1 submatrix elements taken from different rows and columns. Therefore, each term contains a zero factor and the minor detU\(\left( \begin{gathered} {{i}_{2}}...{{i}_{r}} \\ 2...r \\ \end{gathered} \right)\) is equal to zero.

(3) If the minor detU  \(\left( \begin{gathered} {{i}_{2}}...{{i}_{r}} \\ 2...r \\ \end{gathered} \right)\) is different from zero, then according to item 2, the set {i2, …, ir} consists of ms – 1 rows (s = 1, …, \({v}\)) from each basic bicomponent and rows corresponding to vertices from \(\bar {\mathcal{K}}\). Obviously, the minor is equal to the determinant of the block-diagonal matrix, i.e.,

$$\det U\left( \begin{gathered} {{i}_{2}}...{{i}_{r}} \\ 2...r \\ \end{gathered} \right) = \det \left( {\begin{array}{*{20}{c}} {U_{1}^{'}}&{}&{}&{} \\ {}& \ddots &{}&0 \\ {}&{}&{U_{{v}}^{'}}&{} \\ {}&*&{}&{{{L}_{R}}} \end{array}} \right),$$

where the matrix \(U_{i}^{'}\) is obtained from Ui by deleting one ikth row. According to the matrix tree theorem, the determinant of the matrix \(U_{i}^{'}\) is equal to the minor of any element of the ikth row of Ui and its absolute value is equal to the sum of the weights of all outgoing trees from the ikth vertex of the ith basic bicomponent. It is true for any block \(U_{t}^{'}\).

Thus, the absolute value of the non-zero minor detU\(\left( \begin{gathered} {{i}_{2}}...{{i}_{r}} \\ 2...r \\ \end{gathered} \right)\) is equal to the product of det LR and the weight of the set of all outgoing forests on \(\mathcal{K}\) with roots {1, …, n}\{i2, …, ir}.

Proof of Proposition 3. (1) Without loss of generality, we assume that the vertices are numbered as jp = p, p = 1, …, ms. Let {i1, …, ir} be a subset {i1, …, ir'}, where r' = r – |\(\bar {\mathcal{K}}\)|, is a subset of the base vertex set. Consider the determinant det U\(\left( \begin{gathered} 1...{{m}_{s}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\) and represent it in block form as

$$\det \left( {\begin{array}{*{20}{c}} 1&{{{l}_{{12}}}}& \cdots &{{{l}_{{1{{m}_{s}}}}}}&{{{0}_{{1,r' - {{m}_{s}}}}}}&0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 1&{{{l}_{{{{m}_{s}}2}}}}& \cdots &{{{l}_{{{{m}_{s}}{{m}_{s}}}}}}&{{{1}_{{1,r' - {{m}_{s}}}}}}&0 \\ {{{{\mathbf{1}}}_{{r' - p,1}}}}&{{{0}_{{r' - p,1}}}}& \cdots &{{{0}_{{r' - p,1}}}}&{{{Q}_{{r' - {{m}_{s}}}}}}&0 \\ *&*&*&*&*&{{{L}_{R}}} \end{array}} \right) = \det \left( {\begin{array}{*{20}{c}} {{{Q}_{{{{m}_{s}}}}}}&{\mathbf{0}}&{\mathbf{0}} \\ *&{{{Q}_{{r' - {{m}_{s}}}}}}&{\mathbf{0}} \\ *&*&{{{L}_{R}}} \end{array}} \right),$$

According to the matrix tree Theorem 2, the algebraic complement of the first element of any kth row of the block \({{Q}_{{{{m}_{s}}}}}\) is equal to the sum of the weights of the trees outgoing from the vertex k. Therefore, the determinant of the matrix \({{Q}_{{{{m}_{s}}}}}\) is equal to the sum of the weights of all outgoing trees of the basic bicomponent with the vertex set {1, …, ms} and \(\left| {\det U\left( \begin{gathered} 1...{{m}_{s}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)} \right|\) the product of the sum of weights of all outgoing trees of the basic bicomponent with vertices {1, …, ms} and |det\({{Q}_{{r' - {{m}_{s}}}}}\)|, which is equal to the sum of the weights of the maximum outgoing forests on \(\mathcal{K}\)\{1…ms} with vertices: \(\mathcal{K}\)\{i1, …, ir'}, and det LR. Thus, equality (8) is satisfied.

(2) We show that the signs of minors det U  \(\left( \begin{gathered} {{j}_{p}}{{K}_{p}} \\ 1...r \\ \end{gathered} \right)\) ≠ 0 and det U  \(\left( \begin{gathered} {{K}_{p}} \\ 2...r \\ \end{gathered} \right)\) ≠ 0, p = 1, …, ms, is same as.

Note that det U\(\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\) = \(\sum\nolimits_{k = 1}^{{{m}_{s}}} ( \)–1)1+k+ldet\(U_{{k1}}^{s}\)ξ = (–1)lζξ, where l is a number of rows in U\(\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\) up to sth basic bicomponent, Us = (\({{{\mathbf{1}}}_{{{{m}_{s}}}}}\)Us), ζ > 0 is a weight of the set of all outgoing trees in sth basic bicomponent, ξ is a product of determinants of other blocks. Since U\(\left( \begin{gathered} {{j}_{p}}{{K}_{p}} \\ 1...r \\ \end{gathered} \right)\) differs from U\(\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\) by a permutation of one row, their determinants can only differ in sign, and we have

$$\det U\left( \begin{gathered} {{j}_{p}}{{K}_{p}} \\ 1...r \\ \end{gathered} \right) = \det U\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right){{( - 1)}^{{l + p - 1}}} = {{( - 1)}^{{2l + p - 1}}}\zeta \xi ,$$

where p is the row number in the sth block.

So, the sign of det  U\(\left( \begin{gathered} {{j}_{p}}{{K}_{p}} \\ 1...r \\ \end{gathered} \right)\) is equal to (–1)p – 1ξ. It can be easily established that det  U  \(\left( \begin{gathered} {{K}_{p}} \\ 2...r \\ \end{gathered} \right)\) has the sign (–1)p + 1ξ.

Proof of Theorem 3. Due to (6), the sum of the elements of the first row U+ can be written as

$$\sum\limits_{{{i}_{1}} \in N}^{} {u_{{1{{i}_{1}}}}^{ + }} = \frac{{{{\Sigma }_{\mathcal{K}}} + {{\Sigma }_{{\bar {\mathcal{K}}}}}}}{D},$$
(A.1)

where \({{\Sigma }_{\mathcal{K}}}\) corresponds to elements from \(\mathcal{K}\), \({{\Sigma }_{{\bar {\mathcal{K}}}}}\) to vertices from \(\bar {\mathcal{K}}\) = N \\(\mathcal{K}\) and

$$D = {{\sum\limits_{{{i}_{1}} < ... < {{i}_{r}}}^{} {\left( {\det U\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)} \right)} }^{2}}.$$

According to item 1 of the Proposition 2, if the set {i1, …, ir} does not contain all vertices from \(\bar {\mathcal{K}}\), then the corresponding term detU\(\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\) in D representation is equal to zero. Also, by virtue of item 1 of the Proposition 2, we have

$${{\Sigma }_{{\bar {\mathcal{K}}}}} = \sum\limits_{{{i}_{1}} \in \bar {\mathcal{K}}}^{} {\sum\limits_{{{i}_{2}} < ... < {{i}_{r}}}^{} {\det U\left( \begin{gathered} {{i}_{2}}...{{i}_{r}} \\ 2...r \\ \end{gathered} \right)} \det U\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)} = 0.$$

Note that \({{\Sigma }_{\mathcal{K}}}\) and D include the factor det LR. The proof that \(\frac{{{{\Sigma }_{\mathcal{K}}}}}{D}\) is equal to 1 is given in [11].

Proof of Proposition 4. Let us prove the assertion using the representation \(u_{{1{{k}_{1}}}}^{ + }\). Indeed, all corresponding factors detU\(\left( \begin{gathered} {{i}_{1}}...{{i}_{r}} \\ 1...r \\ \end{gathered} \right)\), detU\(\left( \begin{gathered} {{j}_{1}}...{{j}_{r}} \\ 1...r \\ \end{gathered} \right)\) in the expression (6) for \(u_{{1{{i}_{1}}}}^{ + }\) and \(u_{{1{{j}_{1}}}}^{ + }\) differ only in sign, while detU\(\left( \begin{gathered} {{i}_{2}}...{{i}_{r}} \\ 2...r \\ \end{gathered} \right)\) and detU\(\left( \begin{gathered} {{j}_{2}}...{{j}_{r}} \\ 2...r \\ \end{gathered} \right)\) are weights of outgoing trees from i1 and j1.

Proof of Theorem 4. Let us prove the theorem constructively, i.e., we construct a diagonal matrix D. Without loss of generality, we assume that the Laplacian matrix L has a block-triangular form, and for L we also construct an auxiliary matrix BL (A.2), which is obtained from L by replacing the first column in each block Ls corresponding to the basic bicomponent s per column of ones:

$${{B}^{L}} = \left( {\begin{array}{*{20}{c}} {B_{1}^{L}}&0& \cdots &0&0 \\ 0&{B_{2}^{L}}& \cdots &0&0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0&0& \cdots &{B_{{v}}^{L}}&0 \\ *&*& \cdots & \cdots &{{{L}_{R}}} \end{array}} \right),$$
(A.2)

the diagonal blocks \(B_{s}^{L}\), s = 1, …, \({v}\), for the matrix BL are defined as

$$B_{s}^{L} = \left( {\begin{array}{*{20}{c}} 1&{l_{{12}}^{s}}& \cdots &{l_{{1{{m}_{s}}}}^{s}} \\ 1&{l_{{22}}^{s}}& \cdots &{l_{{2{{m}_{s}}}}^{s}} \\ \vdots & \vdots & \ddots & \vdots \\ 1&{l_{{{{m}_{s}}2}}^{s}}& \cdots &{l_{{{{m}_{s}}{{m}_{s}}}}^{s}} \end{array}} \right).$$
(A.3)

Similarly to BL and \(B_{s}^{L}\), we define matrices BM and \(B_{s}^{M}\) for M.

Note that the ith row M is obtained by multiplying the analogous row L by τi. Let us define an eigenprojection \({{M}^{ \vdash }}\) according to item 1 of the Theorem 1:

$$m_{{ij}}^{ \vdash } = \frac{{\varepsilon ({{\mathcal{F}}^{{j \to i}}})}}{{\varepsilon (\mathcal{F})}}.$$
(A.4)

According to the Theorem 2, for each sth basic bicomponent, the sum of the weights of all outgoing trees (on the set of all vertices from the given basic bicomponent) is equal to det(Bs). Therefore ε(\(\mathcal{F}\)) = det(BM).

Let the vertex i be not reachable from  j  in any maximal outgoing forest. Since the graphs corresponding to the Laplacian matrices L and M = TL have the same structure, then \(m_{{ij}}^{ \vdash }\) = \(l_{{ij}}^{ \vdash }\) = 0.

We consider the case when i is reachable from j in at least one maximal out-forest and  j is a vertex from the sth basic bicomponent. Denote by {Γk(V, Ek)} the set of all spanning subgraphs, which is obtained from the set of all maximal outgoing spanning digraphs in which i is reachable from the root vertex j, with the addition of all missing arcs from basic bicomponents. Let \({{B}^{{{{L}^{k}}}}}\) and \({{B}^{{{{M}^{k}}}}}\) be the corresponding matrices of the resulting digraphs constructed by analogy with BL and BM. The diagonal blocks \({{B}^{{{{L}^{k}}}}}\) and \({{B}^{{{{M}^{k}}}}}\), which correspond to the basic bicomponents, match with the similar blocks of the matrices BL and BM, respectively. Obviously, the number ε(\({{\mathcal{F}}^{{j \to i}}}\)) for the digraph corresponding to the matrix M is equal to the sum of the algebraic complements of the elements (  j, i') of the \({{B}^{{{{M}^{k}}}}}\) matrices, i.e., ε(\({{\mathcal{F}}^{{j \to i}}}\)) = \(\sum\nolimits_k^{} {B_{{ji'}}^{{{{M}^{k}}}}} \), where i' ∈ {1, …, n} is the column number \({{B}^{{{{M}^{k}}}}}\), which corresponds to the number of a column of ones in the submatrix corresponding to the basic bicomponent s.

Let j' ∈ {1, …, ms} be the row number of the block with the number s that matches the row j.

Unlike i', the number j' points to the row of the block s. Then due to \(B_{q}^{M}\) = \(B_{q}^{{{{M}_{k}}}}\) for all q and k we get

$$\begin{gathered} m_{{ij}}^{ \vdash } = \frac{{\varepsilon ({{\mathcal{F}}^{{j \to i}}})}}{{\varepsilon (\mathcal{F})}} = \frac{{\sum\limits_k^{} {\det B_{{ji'}}^{{{{M}^{k}}}}} }}{{\det {{B}^{M}}}} = \frac{{\prod\limits_{q = 1,q \ne s}^{v} {\det B_{q}^{M}\left| {\det B_{s}^{M}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}{\kern 1pt} j{{'}} \\ 2...{{m}_{s}} \\ \end{gathered} \right)} \right|\sum\limits_k^{} {\det M_{R}^{k}} } }}{{\det {{M}_{R}}\prod\limits_{q = 1}^{v} {\det B_{q}^{M}} }} \\ = \frac{{\left| {\det B_{s}^{M}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}{\kern 1pt} j{{'}} \\ 2...{{m}_{s}} \\ \end{gathered} \right)} \right|\sum\limits_k^{} {\det M_{R}^{k}} }}{{\det {{M}_{R}}\det B_{s}^{M}}}. \\ \end{gathered} $$

Note that \(L_{R}^{k}\) and \(M_{R}^{k}\) are blocks corresponding to non-basic vertices in the matrices \({{B}^{{{{L}^{k}}}}}\) and \({{B}^{{{{M}^{k}}}}}\), respectively. Next, we represent the resulting expression through the matrix L:

$$m_{{ij}}^{ \vdash } = \frac{{\prod\limits_{i = 1,i \ne j'}^{{{m}_{s}}} {{{\tau }_{i}}\left| {\det L_{s}^{M}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}{\kern 1pt} j{{'}} \\ 2...{{m}_{s}} \\ \end{gathered} \right)} \right|\sum\limits_k^{} {\det L_{R}^{k}} } }}{{\prod\limits_{i = 1}^{{{m}_{s}}} {{{\tau }_{i}}\sum\limits_{p = 1}^{{{m}_{s}}} {\frac{1}{{{{\tau }_{p}}}}\det B_{s}^{L}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}p \\ 2...{{m}_{s}} \\ \end{gathered} \right)\det {{L}_{R}}} } }} = \frac{{\left| {\det L_{s}^{M}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}{\kern 1pt} j{{'}} \\ 2...{{m}_{s}} \\ \end{gathered} \right)} \right|\sum\limits_k^{} {\det L_{R}^{k}} }}{{{{\tau }_{j}}\sum\limits_{p = 1}^{{{m}_{s}}} {\frac{1}{{{{\tau }_{p}}}}\det B_{s}^{L}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}p \\ 2...{{m}_{s}} \\ \end{gathered} \right)\det {{L}_{R}}} }}.$$

Multiply the denominator and numerator by \(\prod\nolimits_{i = 1}^{v} {\det } (B_{i}^{L})\). According to the matrix tree theorem, this number is nonzero and is equal to the weight of the set of all outgoing spanning forests in a digraph that consists of only basic bicomponents. Then:

$$m_{{ij}}^{ \vdash } = \frac{{\left| {\det L_{s}^{M}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}{\kern 1pt} j{{'}} \\ 2...{{m}_{s}} \\ \end{gathered} \right)} \right|\sum\limits_k^{} {\det L_{R}^{k}\det B_{s}^{L}\prod\limits_{q \ne s}^{} {\det B_{q}^{L}} } }}{{{{\tau }_{i}}\sum\limits_{p = 1}^{{{m}_{s}}} {\frac{1}{{{{\tau }_{p}}}}\det B_{s}^{L}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}{\kern 1pt} p \\ 2...{{m}_{s}} \\ \end{gathered} \right)\det {{L}_{R}}\prod\limits_{q = 1}^{v} {\det B_{q}^{L}} } }}.$$

Note that in the last fraction

$$l_{{ij}}^{ \vdash } = \frac{{\left| {\det L_{s}^{M}\left( \begin{gathered} (1...{{m}_{s}}){{\backslash }}{\kern 1pt} j{{'}} \\ 2...{{m}_{s}} \\ \end{gathered} \right)} \right|\sum\limits_k^{} {\det L_{R}^{k}\prod\limits_{q \ne s}^{} {\det B_{q}^{L}} } }}{{\det {{L}_{R}}\prod\limits_{q = 1}^{v} {\det B_{q}^{L}} }}.$$

Then

$$m_{{ij}}^{ \vdash } = l_{{ij}}^{ \vdash }\frac{{\det B_{s}^{L}}}{{{{\tau }_{j}}\det {{C}_{s}}}},$$
(A.5)

where the matrices Cs, s = 1, …, \({v}\), are defined as follows:

$${{C}_{s}} = \left( {\begin{array}{*{20}{c}} {\frac{1}{{\tau _{1}^{s}}}}&{l_{{12}}^{s}}& \cdots &{l_{{1{{m}_{s}}}}^{s}} \\ {\frac{1}{{\tau _{2}^{s}}}}&{l_{{22}}^{s}}& \cdots &{l_{{2{{m}_{s}}}}^{s}} \\ \vdots & \vdots & \ddots & \vdots \\ {\frac{1}{{\tau _{{{{m}_{s}}}}^{s}}}}&{l_{{{{m}_{s}}2}}^{s}}& \cdots &{l_{{{{m}_{s}}{{m}_{s}}}}^{s}} \end{array}} \right).$$
(A.6)

We construct two diagonal matrices F = diag(f1, …, fn) and H = diag(h1, …, hn) as follows: ft = det\(B_{s}^{L}\) and ht = detCs if the vertex t belongs to the sth basic bicomponent. For all other diagonal elements of the matrices F and H we set ft = ht = 1.

Then

$${{M}^{ \vdash }} = {{L}^{ \vdash }}{{T}^{{ - 1}}}F{{H}^{{ - 1}}} = {{L}^{ \vdash }}D.$$
(A.7)

Note that in (A.5) no requirements are imposed on the vertex i. In particular, it may belong to some basic bicomponent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agaev, R.P., Khomutov, D.K. On the Properties of Orthogonal Projection Method for Reaching Consensus. Autom Remote Control 84, 457–469 (2023). https://doi.org/10.1134/S0005117923050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923050028

Keywords:

Navigation