Skip to main content
Log in

Studying the Dynamic Properties of a Distributed Thermomechanical Controlled Plant with Intrinsic Feedback. II

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The dynamic properties of the response of a one-dimensional elastic mechanical system to an external mechanical action are examined. Transfer functions are calculated in two channels: from the force action at one of the system boundaries to the displacement of the medium sections and to the temperature. The asymptotic behavior of the transfer function is analyzed for each channel in the neighborhood of the origin on the complex plane. The case of no heat exchange between the system and the environment is considered separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Kovalenko, A.D., Vvedenie v termouprugost’ (Introduction to Thermoelasticity), Kiev: Naukova Dumka, 1964.

  2. Lord, H. and Shulman, Y., A Generalized Dynamical Theory of Thermoelasticity, J. Mech. Phys. Solids, 1967, vol. 15, pp. 299–309.

    Article  MATH  Google Scholar 

  3. Nayfeh, A.H. and Nemat-Nasser, S., Thermoelastic Waves in Solids with Thermal Relaxation, Acta Mechanica, 1971, vol. 12, pp. 53–69.

    Article  MATH  Google Scholar 

  4. Novacki, W., Teoria sprȩcżystośći, Warszawa: Państwowe Wydawnictwo Naukowe, 1970.

    Google Scholar 

  5. Jordan, P.M. and Puri, P., On the Propagation of Plane Waves in Type–I11 Thermoelastic media, Proc. Royal Soc. Lond. A., 2004, vol. 460, pp. 3203–3221.

    Article  MATH  Google Scholar 

  6. Rogovoi, A.A. and Stolbova, O.S., Evolutionary Model of Finite-Strain Thermoelasticity, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 3, pp. 500–509.

    Article  MathSciNet  MATH  Google Scholar 

  7. Babenkov, M.B., Propagation of Harmonic Perturbations in a Thermoelastic Medium with Heat Relaxation, J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 2, pp. 277–286.

    Article  MATH  Google Scholar 

  8. Markin, A.A. and Sokolova, M.Yu., Termomekhanika uprugoplasticheskogo deformirovaniya (Thermomechanics of Elastoplastic Deformation), Moscow: Nauka, 2013.

  9. Torsukova, E.B. and Khristich, D.V., Statement of a Coupled Dynamic Thermoelasticity Problem for a Bar, Vestn. Tul’sk. Gos. Univ. Ser. Differ. Uravn. Prikl. Zadachi, 2016, no. 1, pp. 88–92.

  10. Solnechnyi, E.M., Studying the Dynamic Properties of a Distributed Thermomechanical Controlled Plant with Intrinsic Feedback. I, Autom. Remote Control, 2020, vol. 81, no. 4, pp. 614–621. https://doi.org/10.1134/S0005117920040049

    Article  MathSciNet  MATH  Google Scholar 

  11. Solnechnyi, E.M., The Dynamic Properties Investigation for a Distributed Thermomechanical Control Plant, Proceedings of 2018 Eleventh International Conference “Management of Large-Scale System Development” (MLSD), Moscow, October 1–3, 2018, pp. 1–4. https://doi.org/10.1109/MLSD.2018.8551890

  12. Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of Complex Variable), Moscow: Lan’, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Solnechnyi.

Additional information

This paper was recommended for publication by A.G. Kushner, a member of the Editorial Board

Appendices

APPENDIX A

Proof of Theorem 1. (1) We apply the Laplace transform to Eqs. (2.1) with respect to the spatial coordinate x considering the first boundary condition in (2.2). (For details, see [12, item 80, formulas (6) and (7)].) As a result,

$$\left\{ \begin{gathered} ({{c}^{2}}{{q}^{2}} - {{p}^{2}})\bar {\bar {\varphi }}(q) - \beta q\bar {\bar {\theta }}(q) = {{z}_{1}}(q), \hfill \\ - {{\beta }_{{{\text{therm}}}}}qp\bar {\bar {\varphi }}(q) + (a{{q}^{2}} - p)\bar {\bar {\theta }}(q) = {{z}_{2}}(q), \hfill \\ \end{gathered} \right.$$
(A.1)

where z1(q) = \({{c}^{2}}q\bar {\varphi }(0)\)\(\beta \bar {\theta }(0)\) and z2(q) = \(aq\bar {\theta }(0)\) + \(a\frac{{\partial \bar {\theta }}}{{\partial x}}(0)\)\({{\beta }_{{{\text{therm}}}}}p\bar {\varphi }(0)\).

In view of these expressions for zi(q), the solution of system (A.l) in (\(\bar {\bar {\varphi }}\)(q), \(\bar {\bar {\theta }}\)(q)) is given by

$$\bar {\bar {\varphi }}(q) = \frac{{a{{c}^{2}}{{q}^{3}}\bar {\varphi }(0) + {{B}_{1}}q + \beta p\bar {\theta }(0)}}{{\Delta (q)}},$$
(A.2)
$$\bar {\bar {\theta }}(q) = \frac{{a{{c}^{2}}{{q}^{3}}\bar {\theta }(0) + a{{c}^{2}}{{q}^{2}}\frac{{\partial \bar {\theta }}}{{\partial x}}(0) + {{B}_{2}}{{p}^{2}} - {{b}_{2}}qp\bar {\theta }(0)}}{{\Delta (q)}},$$
(A.3)

where

$$\Delta (q) = a{{c}^{2}}\left( {{{q}^{2}} - {{\rho }_{1}}} \right)\left( {{{q}^{2}} - {{\rho }_{2}}} \right),\quad {{\rho }_{{1,2}}} = \frac{{p(ap + {{b}_{1}}) \pm R}}{{2a{{c}^{2}}}},$$
$$R = ap\sqrt {{{{(p + \mu )}}^{2}} + {{y}^{2}}} ,\quad \mu = \frac{{\beta {{\beta }_{{{\text{therm}}}}} - {{c}^{2}}}}{a},\quad y = 2\frac{c}{a}\sqrt {\beta {{\beta }_{{{\text{therm}}}}}} ,$$
$${{b}_{1}} = \beta {{\beta }_{{{\text{therm}}}}} + {{c}^{2}},\quad {{b}_{2}} = \beta {{\beta }_{{{\text{therm}}}}} + ap,$$
$${{B}_{1}} = \beta a\frac{{\partial \bar {\theta }}}{{\partial x}}(0) - {{b}_{1}}p\bar {\varphi }(0),\quad {{B}_{2}} = {{\beta }_{{{\text{therm}}}}}p\bar {\varphi }(0) - a\frac{{\partial \bar {\theta }}}{{\partial x}}(0).$$

Based on the relation

$$\frac{1}{{\Delta (q)}} = \frac{1}{R}\left( {\frac{1}{{{{q}^{2}} - {{\rho }_{1}}}} - \frac{1}{{{{q}^{2}} - {{\rho }_{2}}}}} \right),$$
(A.4)

from (A.2) and (A.3) we pass to the original functions with respect to the coordinate x:

$$\bar {\varphi }(x) = a{{c}^{2}}{{D}_{3}}(x)\bar {\varphi }(0) + {{D}_{1}}(x){{B}_{1}} + \beta p{{D}_{0}}(x)\bar {\theta }(0),$$
(A.5)
$$\bar {\theta }(x) = a{{c}^{2}}{{D}_{3}}(x)\bar {\theta }(0) + a{{c}^{2}}{{D}_{2}}(x)\frac{{\partial \bar {\theta }}}{{\partial x}}(0) - {{b}_{2}}p{{D}_{1}}(x)\bar {\theta }(0) + {{p}^{2}}{{D}_{0}}(x){{B}_{2}},$$
(A.6)

where

$${{D}_{j}}(x) = \frac{1}{R}\left( {\rho _{1}^{{(j - 1)/2}}\sinh \left( {x\sqrt {{{\rho }_{1}}} } \right) - \rho _{2}^{{(j - 1)/2}}\sinh \left( {x\sqrt {{{\rho }_{2}}} } \right)} \right)\quad (j = 0;2),$$
$${{D}_{j}}(x) = \frac{1}{R}\left( {\rho _{1}^{{(j - 1)/2}}\cosh \left( {x\sqrt {{{\rho }_{1}}} } \right) - \rho _{2}^{{(j - 1)/2}}\cosh \left( {x\sqrt {{{\rho }_{2}}} } \right)} \right)\quad (j = 1;3).$$

(The details can be found in [12, item 80, formula (4)].)

Due to (A.5) and the first condition in (2.3), the second boundary condition in (2.2) takes the form

$${{p}^{2}}\left[ {\left( {a{{c}^{2}}{{D}_{3}}(l) - {{b}_{1}}p{{D}_{1}}(l)} \right)\bar {\varphi }(0) + \beta (p{{D}_{0}}(l) + a\kappa {{D}_{1}}(l))\bar {\theta }(0)} \right] = \bar {u}.$$
(A.7)

According to (A.6), the second condition in (2.3) reduces to

$$\begin{gathered} a{{c}^{2}}({{D}_{4}}(l) + \kappa {{D}_{3}}(l))\bar {\theta }(0) + a{{c}^{2}}\kappa ({{D}_{3}}(l) + \kappa {{D}_{2}}(l))\bar {\theta }(0) \\ - \;{{b}_{2}}p({{D}_{2}}(l) + \kappa {{D}_{1}}(l))\bar {\theta }(0) + {{p}^{2}}({{D}_{1}}(l) + \kappa {{D}_{0}}(l))\left( {{{\beta }_{{{\text{therm}}}}}p\bar {\varphi }(0) - \kappa a\bar {\theta }(0)} \right) = 0, \\ \end{gathered} $$
(A.8)

where

$${{D}_{4}}(l) = \frac{1}{R}\left( {\rho _{1}^{{3/2}}\sinh \left( {x\sqrt {{{\rho }_{1}}} } \right) - \rho _{2}^{{3/2}}\sinh \left( {x\sqrt {{{\rho }_{2}}} } \right)} \right).$$

Conditions (A.7) and (A.8) make up the following system of equations in the vector \(\left( \begin{gathered} \bar {\varphi }(0) \\ \bar {\theta }(0) \\ \end{gathered} \right)\):

$$A\left( \begin{gathered} \bar {\varphi }(0) \\ \bar {\theta }(0) \\ \end{gathered} \right) = \left( \begin{gathered} {\bar {u}} \\ 0 \\ \end{gathered} \right),$$
(A.9)

where A = (ajk; j, k = 1, 2), a11 = p2(ac2D3(l) – b1pD1(l)),

$${{a}_{{12}}} = \beta {{p}^{2}}(\kappa a{{D}_{1}}(l) + p{{D}_{0}}(l)),\quad {{a}_{{21}}} = {{\beta }_{{{\text{therm}}}}}{{p}^{3}}({{D}_{1}}(l) + \kappa {{D}_{0}}(l)),$$
$${{a}_{{22}}} = a{{c}^{2}}{{D}_{4}}(l) + 2\kappa a{{c}^{2}}{{D}_{3}}(l) + \left( {{{\kappa }^{2}}a{{c}^{2}} - {{b}_{2}}p} \right){{D}_{2}}(l)$$
$$ - \;\kappa p(2ap + \beta {{\beta }_{{{\text{therm}}}}}){{D}_{1}}(l) - {{\kappa }^{2}}a{{p}^{2}}{{D}_{0}}(l).$$

The solution of system (A.9) is given by

$$\left( \begin{gathered} \bar {\varphi }(0) \\ \bar {\theta }(0) \\ \end{gathered} \right) = \left( \begin{gathered} {{a}_{{22}}} \\ - {{a}_{{21}}} \\ \end{gathered} \right)\frac{{\bar {u}}}{{{{\Delta }_{A}}}},$$
(A.10)

where ΔA = a11a22a12a21.

Substituting (A.10) into (A.5) and (A.6) and using the formula for Bi and the first condition in (2.3), we finally arrive at the following expressions for \(\bar {\varphi }\)(x) and \(\bar {\theta }\)(x):

$$\bar {\varphi }(x) = \left\{ {{{a}_{{22}}}\left[ {a{{c}^{2}}{{D}_{3}}(x) - {{b}_{1}}p{{D}_{1}}(x)} \right] - \beta {{a}_{{21}}}\left[ {\kappa a{{D}_{1}}(x) + p{{D}_{0}}(x)} \right]} \right\}\frac{{\bar {u}}}{{{{\Delta }_{A}}}},$$
(A.11)
$$\bar {\theta }(x) = \left\{ {{{a}_{{22}}}{{\beta }_{{{\text{therm}}}}}{{p}^{3}}{{D}_{0}}(x) + {{a}_{{21}}}\left[ { - a{{c}^{2}}{{D}_{3}}(x) - \kappa a{{c}^{2}}{{D}_{2}}(x) + {{b}_{2}}p{{D}_{1}}(x) + \kappa a{{p}^{2}}{{D}_{0}}(x)} \right]} \right\}\frac{{\bar {u}}}{{{{\Delta }_{A}}}}.$$
(A.12)

APPENDIX B

Proof of Theorem 2. (1) In the neighborhood of the origin on the plane C, the functions R and ρjj = 1, 2; see the explanations for (2.4) and (2.5)) can be represented as

$$R = {{b}_{1}}p(1 + O(p)),\quad {{\rho }_{1}} = \frac{{{{b}_{1}}p}}{{a{{c}^{2}}}}(1 + O(p)),\quad {{\rho }_{2}} = O\left( {{{p}^{2}}} \right).$$
(B.1)

(2) In the neighborhood of the origin on the plane C, the functions Dj(x) ( j = 0\( \div \)4) can be represented as follows:

$${{D}_{0}}(x) = \frac{{{{x}^{3}}}}{6}\frac{{{{\rho }_{1}} - {{\rho }_{2}}}}{R} + O\left( {{{p}^{2}}} \right) = \frac{{{{x}^{3}}}}{{6a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right),$$
(B.2)
$${{D}_{1}}(x) = \frac{{{{x}^{2}}}}{2}\frac{{{{\rho }_{1}} - {{\rho }_{2}}}}{R} + O\left( {{{p}^{2}}} \right) = \frac{{{{x}^{2}}}}{{2a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right),$$
(B.3)
$${{D}_{2}}(x) = x\frac{{{{\rho }_{1}} - {{\rho }_{2}}}}{R} + O\left( {{{p}^{2}}} \right) = \frac{x}{{a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right),$$
(B.4)
$${{D}_{3}}(x) = \frac{{{{\rho }_{1}} - {{\rho }_{2}}}}{R} + O\left( {{{p}^{2}}} \right) = \frac{1}{{a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right),$$
(B.5)
$${{D}_{4}}(x) = x\frac{{\rho _{1}^{2} - \rho _{2}^{2}}}{R} + O\left( {{{p}^{2}}} \right) = x\frac{{{{\rho }_{1}} + {{\rho }_{2}}}}{{a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right) = x\frac{{{{b}_{1}}}}{{{{a}^{2}}{{c}^{4}}}}p + O\left( {{{p}^{2}}} \right).$$
(B.6)

(3) In the neighborhood of the origin on the plane C, the functions ajkj, k = 1, 2; see the explanations for (A.9)) can be represented as follows:

$${{a}_{{11}}} = {{p}^{2}}\left( {1 - \frac{{{{b}_{1}}{{l}^{2}}}}{{2a{{c}^{2}}}}p + O\left( {{{p}^{2}}} \right)} \right) = {{p}^{2}}(1 + O(p)),$$
(B.7)
$${{a}_{{12}}} = \beta {{p}^{2}}\left( {\frac{{{{l}^{3}}}}{{6a{{c}^{2}}}}p + \kappa \frac{{{{l}^{2}}}}{{2{{c}^{2}}}} + O\left( {{{p}^{2}}} \right)} \right) = \beta \kappa \frac{{{{l}^{2}}}}{{2{{c}^{2}}}}{{p}^{2}}(1 + O(p)),$$
(B.8)
$${{a}_{{21}}} = {{\beta }_{{{\text{therm}}}}}{{p}^{3}}\left( {\frac{{{{l}^{2}}}}{{2a{{c}^{2}}}} + \kappa \frac{{{{l}^{3}}}}{{6a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right)} \right) = {{\beta }_{{{\text{therm}}}}}{{p}^{3}}\frac{{{{l}^{2}}}}{{2a{{c}^{2}}}}\left( {1 + \kappa \frac{l}{3}} \right)\left( {1 + O\left( {{{p}^{2}}} \right)} \right),$$
(B.9)
$$\begin{gathered} {{a}_{{22}}} = \frac{{{{b}_{1}}l}}{{a{{c}^{2}}}}p + 2\kappa + l\left( {{{\kappa }^{2}} - \frac{{{{b}_{2}}}}{{a{{c}^{2}}}}p} \right) - \kappa p\frac{{{{l}^{2}}}}{{{{c}^{2}}}}\left( {p + \frac{{\beta {{\beta }_{{{\text{therm}}}}}}}{{2a}}} \right) \\ - \;{{\kappa }^{2}}{{p}^{2}}\frac{{{{l}^{3}}}}{{6{{c}^{2}}}} + O\left( {{{p}^{2}}} \right) = \kappa (2 + \kappa l)(1 + O(p)). \\ \end{gathered} $$
(B.10)

(4) In the neighborhood of the origin on the plane C, the function ΔA (see the explanations for (A.10)) and the ratios \(\frac{{{{a}_{{2j}}}}}{{{{\Delta }_{A}}}}\)j = 1, 2; see (2.4) and (2.5)) can be represented as

$$\begin{gathered} {{\Delta }_{A}} = {{p}^{2}}\kappa (2 + \kappa l)(1 + O(p)) - {{p}^{5}}\kappa \frac{{\beta {{\beta }_{{{\text{therm}}}}}{{l}^{4}}}}{{4a{{c}^{4}}}}\left( {1 + \kappa \frac{l}{3}} \right)(1 + O(p)) \\ = {{p}^{2}}\kappa (2 + \kappa l)(1 + O(p)), \\ \end{gathered} $$
(B.11)
$$\frac{{{{a}_{{21}}}}}{{{{\Delta }_{A}}}} = p\frac{{{{\beta }_{{{\text{therm}}}}}{{l}^{2}}(1 + \kappa l{\text{/}}3)}}{{2\kappa a{{c}^{2}}(2 + \kappa l)}}(1 + O(p)) = p\frac{{{{\beta }_{{{\text{therm}}}}}{{l}^{2}}(3 + \kappa l)}}{{6\kappa a{{c}^{2}}(2 + \kappa l)}}(1 + O(p)),$$
(B.12)
$$\frac{{{{a}_{{22}}}}}{{{{\Delta }_{A}}}} = \frac{1}{{{{p}^{2}}}}(1 + O(p)).$$
(B.13)

(5) In the neighborhood of the origin on the plane C, the transfer functions \({{W}_{{u \to \varphi (x)}}}\) and \({{W}_{{u \to \theta (x)}}}\) can be represented as

$$\begin{gathered} {{W}_{{u \to \varphi (x)}}} = \frac{1}{{{{p}^{2}}}}\left( {1 - p\frac{{{{b}_{1}}}}{{2a{{c}^{2}}}}{{x}^{2}}} \right)\left( {1 + O\left( {{{p}^{2}}} \right)} \right) \\ - \;p\frac{{\beta {{\beta }_{{{\text{therm}}}}}{{l}^{2}}(1 + \kappa l{\text{/}}3)}}{{2a{{c}^{2}}\kappa (2 + \kappa l)}}\left( {\kappa \frac{{{{x}^{2}}}}{{2{{c}^{2}}}} + p\frac{{{{x}^{3}}}}{{6a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right)} \right) = \frac{1}{{{{p}^{2}}}}(1 + O(p)), \\ \end{gathered} $$
(B.14)
$$\begin{gathered} {{W}_{{u \to \theta }}}_{{(x)}} = p{{\beta }_{{{\text{therm}}}}}\left[ {\frac{{{{x}^{3}}}}{{6a{{c}^{2}}}} - \frac{{{{l}^{2}}(3 + \kappa l)}}{{6a{{c}^{2}}\kappa (2 + \kappa l)}}\left( {1 + \kappa x - p{{x}^{2}}\frac{{{{b}_{2}}}}{{2a{{c}^{2}}}} - {{p}^{2}}{{x}^{3}}\frac{\kappa }{{6{{c}^{2}}}}} \right)} \right](1 + O(p)) \\ = p\frac{{{{\beta }_{{{\text{therm}}}}}}}{{6a{{c}^{2}}}}\left[ {{{x}^{3}} - {{l}^{2}}\frac{{3 + \kappa l}}{{2 + \kappa l}}\left( {x + \frac{1}{\kappa }} \right)} \right](1 + O(p)). \\ \end{gathered} $$
(B.15)

APPENDIX C

Proof of Theorem 3. (1) Due to (3.5) and (3.6), in the neighborhood of the origin on the plane C, the functions ajkjk = 1, 2) for κ = 0 can be represented as follows:

$${{a}_{{11}}} = {{p}^{2}}(1 + O(p))\quad ({\text{coincides with (B}}{\text{.7)}}),$$
(C.1)
$${{a}_{{12}}} = \beta {{p}^{3}}\left( {\frac{{{{l}^{3}}}}{{6a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right)} \right) = \beta {{p}^{3}}\frac{{{{l}^{3}}}}{{6a{{c}^{2}}}}\left( {1 + O\left( {{{p}^{2}}} \right)} \right),$$
(C.2)
$${{a}_{{21}}} = {{\beta }_{{{\text{therm}}}}}{{p}^{3}}\left( {\frac{{{{l}^{2}}}}{{2a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right)} \right) = {{\beta }_{{{\text{therm}}}}}{{p}^{3}}\frac{{{{l}^{2}}}}{{2a{{c}^{2}}}}\left( {1 + O\left( {{{p}^{2}}} \right)} \right),$$
(C.3)
$${{a}_{{22}}} = p\frac{l}{{a{{c}^{2}}}}({{b}_{1}} - {{b}_{2}}) + O\left( {{{p}^{2}}} \right) = p\frac{l}{{a{{c}^{2}}}}\left( {{{c}^{2}} - ap} \right) + O\left( {{{p}^{2}}} \right) = p\frac{l}{a}(1 + O(p)).$$
(C.4)

(2) Consequently,

$${{\Delta }_{A}} = {{p}^{3}}\frac{l}{a}(1 + O(p)) - \beta {{\beta }_{{{\text{therm}}}}}{{p}^{6}}\frac{{{{l}^{5}}}}{{12{{a}^{2}}{{c}^{4}}}}\left( {1 + O\left( {{{p}^{2}}} \right)} \right) = {{p}^{3}}\frac{l}{a}(1 + O(p)),$$
(C.5)
$$\frac{{{{a}_{{21}}}}}{{{{\Delta }_{A}}}} = {{\beta }_{{{\text{therm}}}}}\frac{l}{{2{{c}^{2}}}}(1 + O(p)),\quad \frac{{{{a}_{{22}}}}}{{{{\Delta }_{A}}}} = \frac{1}{{{{p}^{2}}}}(1 + O(p)).$$
(C.6)

(3) As a result, we obtain

$$\begin{gathered} {{W}_{{u \to \varphi }}}_{{(x)}} = \frac{{1 + O(p)}}{{{{p}^{2}}}}\left[ {1 + O\left( {{{p}^{2}}} \right) - {{b}_{1}}p\left( {\frac{{{{x}^{2}}}}{{2a{{c}^{2}}}} + O\left( {{{p}^{2}}} \right)} \right)} \right] \\ - \;p\beta {{\beta }_{{{\text{therm}}}}}\left( {\frac{{l{{x}^{3}}}}{{12a{{c}^{4}}}} + O\left( {{{p}^{2}}} \right)} \right) = \frac{1}{{{{p}^{2}}}}(1 + O(p)), \\ \end{gathered} $$
(C.7)
$$\begin{gathered} {{W}_{{u \to \theta }}}_{{(x)}} = p{{\beta }_{{{\text{therm}}}}}\frac{{{{x}^{3}}}}{{6a{{c}^{2}}}}(1 + O(p)) \\ + \;{{\beta }_{{{\text{therm}}}}}\frac{l}{{2{{c}^{2}}}}(1 + O(p))\left[ {p{{b}_{2}}\frac{{{{x}^{2}}}}{{2a{{c}^{2}}}} - 1 + O\left( {{{p}^{2}}} \right)} \right] = - {{\beta }_{{{\text{therm}}}}}\frac{l}{{2{{c}^{2}}}}(1 + O(p)). \\ \end{gathered} $$
(C.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solnechnyi, E.M. Studying the Dynamic Properties of a Distributed Thermomechanical Controlled Plant with Intrinsic Feedback. II. Autom Remote Control 84, 348–354 (2023). https://doi.org/10.1134/S0005117923040112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923040112

Keywords:

Navigation