Skip to main content
Log in

Inverse Kinematics of a 5-DOF Hybrid Manipulator

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Control of any robotic system cannot be executed without a preliminary solution of the inverse kinematic problem. This problem implies determining the control actions of the actuators required to perform a given motion trajectory and embedded into the control system. The current study considers the inverse kinematics of a hybrid (parallel-serial) manipulator with five degrees-of-freedom (5-DOF). The article first briefly describes the manipulator structure, which includes 3-DOF parallel and 2-DOF serial parts, and then explains an algorithm for solving the inverse kinematics. The algorithm relies on the product-of-exponentials (PoE) formula applied to an equivalent manipulator with a serial structure. The proposed algorithm results in a closed-form solution with no assumptions about the manipulator geometry. A case study confirms the algorithm correctness. The method for solving the inverse kinematic problem can be adapted for other hybrid manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Supplementary Information

MATLAB files that correspond to the proposed algorithms are available free online at http://dx.doi.org/10.17632/tp8nx5jhyv.1.

REFERENCES

  1. Ganiev, R.F., Glazunov, V.A., and Filippov, G.S., Urgent Problems of Machine Science and Ways of Solving Them: Wave and Additive Technologies, the Machine Tool Industry, and Robot Surgery, Journal of Machinery Manufacture and Reliability, 2018, vol. 47, no. 5, pp. 399–406. https://doi.org/10.3103/S1052618818050059

    Article  Google Scholar 

  2. Wen, K., Harton, D., Laliberté, T., and Gosselin, C., Kinematically Redundant (6+3)-dof Hybrid Parallel Robot with Large Orientational Workspace and Remotely Operated Gripper, Proceedings of the 2019 IEEE International Conference on Robotics and Automation, IEEE, 2019, pp. 1672–1678. https://doi.org/10.1109/ICRA.2019.8793772

  3. Liu, Q. and Huang, T., Inverse Kinematics of a 5-axis Hybrid Robot with Non-singular Tool Path Generation, Robotics and Computer-Integrated Manufacturing, 2019, vol. 56, pp. 140–148. https://doi.org/10.1016/j.rcim.2018.06.003

    Article  Google Scholar 

  4. Carbone, G. and Ceccarelli, M., A Stiffness Analysis for a Hybrid Parallel-serial Manipulator, Robotica, 2004, vol. 22, no. 5, pp. 567–576. https://doi.org/10.1017/S0263574704000323

    Article  Google Scholar 

  5. Lai, Y.-L., Liao, C.-C., and Chao, Z.-G., Inverse Kinematics for a Novel Hybrid Parallel–serial Five-axis Machine Tool, Robotics and Computer-Integrated Manufacturing, 2018, vol. 50, pp. 63–79. https://doi.org/10.1016/j.rcim.2017.09.002

    Article  Google Scholar 

  6. Oba, Y. and Kakinuma, Y., Simultaneous Tool Posture and Polishing Force Control of Unknown Curved Surface Using Serial-parallel Mechanism Polishing Machine, Precision Engineering, 2017, vol. 49, pp. 24–32. https://doi.org/10.1016/j.precisioneng.2017.01.006

    Article  Google Scholar 

  7. Waldron, K.J., Raghavan, M., and Roth, B., Kinematics of a Hybrid Series-parallel Manipulation System, Journal of Dynamic Systems, Measurement, and Control, 1989, vol. 111, no. 2, pp. 211–221. https://doi.org/10.1115/1.3153039

    Article  Google Scholar 

  8. Cheng, H.H., Real-time Manipulation of a Hybrid Serial-and-parallel-driven Redundant Industrial Manipulator, Journal of Dynamic Systems, Measurement, and Control, 1994, vol. 116, no. 4, pp. 687–701. https://doi.org/10.1115/1.2899268

    Article  Google Scholar 

  9. Lynch, K.M. and Park, F.C., Modern Robotics: Mechanics, Planning, and Control, Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316661239

    Book  Google Scholar 

  10. Tang, Z. and Payandeh, S., Design and Modeling of a Novel 6 Degree of Freedom Haptic Device, Proceedings of the 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, IEEE, 2009, pp. 1941–1946. https://doi.org/10.1109/WHC.2009.4810891

  11. Yan, C., Gao, F., and Zhang, Y., Kinematic Modeling of a Serial-parallel Forging Manipulator with Application to Heavy-duty Manipulations, Mechanics Based Design of Structures and Machines, 2010, vol. 38, no. 1, pp. 105–129. https://doi.org/10.1080/15397730903455344

    Article  Google Scholar 

  12. Sun, P., Li, Y.B., Wang, Z.S., Chen, K., Chen, B., Zeng, X., Zhao, J., and Yue, Y., Inverse Displacement Analysis of a Novel Hybrid Humanoid Robotic Arm, Mechanism and Machine Theory, 2020, vol. 147, p. 103743. https://doi.org/10.1016/j.mechmachtheory.2019.103743

  13. Yang, G., Chen, W., and Ho, E.H.L., Design and Kinematic Analysis of a Modular Hybrid Parallelserial Manipulator, Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision, IEEE, 2002, vol. 1, pp. 45–50. https://doi.org/10.1109/ICARCV.2002.1234788

  14. Tang, C., Zhang, J., and Cheng, S., Kinematics Analysis for a Hybrid Robot in Minimally Invasive Surgery, Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, IEEE, 2009, pp. 1941–1946. https://doi.org/10.1109/ROBIO.2009.5420534

  15. Lee, M.K., Park, K.W., and Choi, B.O., Kinematic and Dynamic Models of Hybrid Robot Manipulator for Propeller Grinding, Journal of Robotic Systems, 1999, vol. 16, no. 3, pp. 137–150. https://doi.org/10.1002/(SICI)1097-4563(199903)16:3<137::AID-ROB1>3.0.CO;2-V

    Article  MATH  Google Scholar 

  16. Pisla, D., Gherman, B., Vaida, C., Suciu, M., and Plitea, N., An Active Hybrid Parallel Robot for Minimally Invasive Surgery, Robotics and Computer-Integrated Manufacturing, 2013, vol. 29, no. 4, pp. 203–221. https://doi.org/10.1016/j.rcim.2012.12.004

    Article  MATH  Google Scholar 

  17. Hu, B., Shi, Y., Xu, L., and Bai, P., Reconsideration of Terminal Constraint/Mobility and Kinematics of 5-DOF Hybrid Manipulators Formed by One 2R1T PM and One RR SM, Mechanism and Machine Theory, 2020, vol. 149, p. 103837. https://doi.org/10.1016/j.mechmachtheory.2020.103837

  18. Ye, H., Wang, D., Wu, J., Yue, Y., and Zhou, Y., Forward and Inverse Kinematics of a 5-DOF Hybrid Robot for Composite Material Machining, Robotics and Computer-Integrated Manufacturing, 2020, vol. 65, p. 101961. https://doi.org/10.1016/j.rcim.2020.101961

  19. Lґopez-Custodio, P.C., Fu, R., Dai, J.S., and Jin, Y., Compliance Model of Exechon Manipulators with an Offset Wrist, Mechanism and Machine Theory, 2022, vol. 167, p. 104558. https://doi.org/10.1016/j.mechmachtheory.2021.104558

  20. Antonov, A., Fomin, A., Glazunov, V., Kiselev, S., and Carbone, G., Inverse and Forward Kinematics and Workspace Analysis of a Novel 5-DOF (3T2R) Parallel-serial (Hybrid) Manipulator, International Journal of Advanced Robotic Systems, 2021, vol. 18, no. 2, p. 2963. https://doi.org/10.1177/1729881421992963

    Article  Google Scholar 

  21. Gosselin, C. and Schreiber, L.-T., Redundancy in Parallel Mechanisms: A Review, Applied Mechanics Reviews, 2018, vol. 70, no. 1, p. 010802. https://doi.org/10.1115/1.4038931

  22. Waldron, K.J. and Schmiedeler, J., Kinematics, Springer Handbook of Robotics, Springer, 2016, pp. 11–36. https://doi.org/10.1007/978-3-319-32552-1_2

    Book  Google Scholar 

  23. Liu, S., Qiu, Z., and Zhang, X., Singularity and Path-planning with the Working Mode Conversion of a 3-DOF 3-RRR Planar Parallel Manipulator, Mechanism and Machine Theory, 2017, vol. 107, pp. 166–182. https://doi.org/10.1016/j.mechmachtheory.2016.09.004

    Article  Google Scholar 

  24. Murray, R.M., Li, Z., and Sastry, S.S., A Mathematical Introduction to Robotic Manipulation, Boca Raton: CRC Press, 1994. https://doi.org/10.1201/9781315136370

Download references

Funding

This research was supported by Russian Science Foundation (RSF) under grant no. 22-79-10304, https://rscf.ru/project/22-79-10304/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Antonov or A. S. Fomin.

Additional information

This paper was recommended for publication by P.V. Pakshin, a member of the Editorial Board

The original online version of this article was revised: The display of special characters has been corrected.

Appendices

APPENDIX A

This Appendix outlines the application of the PoE formula [9] for the kinematic analysis of robotic manipulators.

Let the output link of a manipulator be attached to its base by an open kinematic chain, which consists of n 1-DOF joints (we can represent any multi-DOF joint as a combination of 1-DOF ones). We can associate (unit) twist ξi\({{\mathbb{R}}^{6}}\) with the ith joint, i = 1, …, n:

$${\boldsymbol{\xi }_{i}} = \left[ \begin{gathered} {{{\boldsymbol{\omega }}}_{i}} \\ {{{\boldsymbol{\upsilon }}}_{i}} \\ \end{gathered} \right] = \left\{ \begin{gathered} \left[ \begin{gathered} {{{{\mathbf{\hat {s}}}}}_{i}} \\ {{{\mathbf{r}}}_{i}} \times {{{{\mathbf{\hat {s}}}}}_{i}} + {{h}_{i}}{{{{\mathbf{\hat {s}}}}}_{i}} \\ \end{gathered} \right],\quad {\text{if}}\quad {{h}_{i}} \ne \infty , \hfill \\ \left[ \begin{gathered} {{{\mathbf{0}}}_{{3 \times 1}}} \\ {{{{\mathbf{\hat {s}}}}}_{i}} \\ \end{gathered} \right],\quad \quad \quad \,\,{\text{if}}\quad {{h}_{i}} = \infty , \hfill \\ \end{gathered} \right.$$
(A.1)

where ωi\({{\mathbb{R}}^{3}}\) is a vector part of the twist; \({{{\boldsymbol{\upsilon }}}_{i}}\)\({{\mathbb{R}}^{3}}\) is a moment part of the twist; \({{{\mathbf{\hat {s}}}}_{i}}\) is a unit vector parallel to the twist axis; ri is a vector that defines coordinates of an arbitrary point on the twist axis; hi is a pitch of the twist.

Let SXSYSZS be a reference frame attached to the output link, and let matrix TSSE(3) define its configuration relative to base reference frame OXYZ. Finally, let matrix MS describe some initial configuration of the manipulator. In this configuration, we can associate twists ξi, i = 1, …, n, with the chain joints according to Eq. (A.1). Then, the following relation exists between matrices TS and MS [9, p. 120]:

$${{{\mathbf{T}}}_{S}} = \left( {\prod\limits_{i = 1}^n {{{e}^{{[{\boldsymbol{\xi }_{i}}]{{\theta }_{i}}}}}} } \right){{{\mathbf{M}}}_{S}},$$
(A.2)

where θi is a displacement in the ith joint; [ξi] is a matrix representation of twist ξi:

$$\begin{gathered} \text{[}{\boldsymbol{\xi }_{i}}] = \left[ {\begin{array}{*{20}{c}} {\Lambda ({{{\boldsymbol{\omega }}}_{i}})}&{{{{\boldsymbol{\upsilon }}}_{i}}} \\ {{{{\mathbf{0}}}_{{1 \times 3}}}}&0 \end{array}} \right] \in se(3), \\ \Lambda ({{{\boldsymbol{\omega }}}_{i}}) = \Lambda \left( {\left[ \begin{gathered} \omega _{i}^{x} \\ \omega _{i}^{y} \\ \omega _{i}^{z} \\ \end{gathered} \right]} \right) = \left[ {\begin{array}{*{20}{c}} 0&{ - \omega _{i}^{z}}&{\omega _{i}^{y}} \\ {\omega _{i}^{z}}&0&{ - \omega _{i}^{x}} \\ { - \omega _{i}^{y}}&{\omega _{i}^{x}}&0 \end{array}} \right] \in so(3). \\ \end{gathered} $$
(A.3)

Equation (A.2) represents the product of exponentials \({{e}^{{[{\boldsymbol{\xi }_{i}}]{{\theta }_{i}}}}}\):

$${{e}^{{[{\boldsymbol{\xi }_{i}}]{{\theta }_{i}}}}} = \left[ {\begin{array}{*{20}{c}} {{{e}^{{\Lambda ({{{\boldsymbol{\omega }}}_{i}}){{\theta }_{i}}}}}}&{({{{\mathbf{I}}}_{{3 \times 3}}}{{\theta }_{i}} + (1 - \cos {{\theta }_{i}})\Lambda ({{{\boldsymbol{\omega }}}_{i}}) + ({{\theta }_{i}} - \sin {{\theta }_{i}})\Lambda {{{({{{\boldsymbol{\omega }}}_{i}})}}^{2}}){{{\boldsymbol{\upsilon }}}_{i}}} \\ {{{{\mathbf{0}}}_{{1 \times 3}}}}&1 \end{array}} \right],$$

where \({{e}^{{\Lambda ({{{\boldsymbol{\omega }}}_{i}}){{\theta }_{i}}}}}\) corresponds to the rotation matrix about the axis defined by vector ωi by angle θi:

$${{e}^{{\Lambda ({{{\boldsymbol{\omega }}}_{i}}){{\theta }_{i}}}}} = {{{\mathbf{I}}}_{{3 \times 3}}} + \sin {{\theta }_{i}}\Lambda ({{{\boldsymbol{\omega }}}_{i}}) + (1 - \cos {{\theta }_{i}})\Lambda {{({{{\boldsymbol{\omega }}}_{i}})}^{2}}.$$

Initial configuration MS and corresponding twists ξi, i = 1, …, n, depend on the manipulator design and location of reference frames SXSYSZS and OXYZ, so these parameters are considered known for the kinematic analysis. Thus, Eq. (A.2) represents the relationship between joint displacements θi and the output link configuration defined by matrix TS. We can use this equation not only for the forward kinematics (where it is applied generally [9]), but also for the inverse kinematics, which is demonstrated in the present article for the hybrid manipulator.

APPENDIX B

This Appendix contains coefficients of the equations, which are used for solving the inverse kinematic problem:

$${{a}_{1}} = n_{0}^{x}({{(s_{5}^{y})}^{2}} + {{(s_{5}^{z})}^{2}}) - n_{0}^{y}s_{5}^{x}s_{5}^{y} - n_{0}^{z}s_{5}^{x}s_{5}^{z},$$
$${{b}_{1}} = - n_{0}^{y}s_{5}^{x} + n_{0}^{z}s_{5}^{y},$$
$${{c}_{1}} = n_{0}^{x}{{(s_{5}^{x})}^{2}} + n_{0}^{y}s_{5}^{x}s_{5}^{y} + n_{0}^{z}s_{5}^{x}s_{5}^{z} - {{n}^{x}},$$
$$\begin{gathered} {{a}_{2}} = n_{0}^{x}(s_{5}^{x}s_{5}^{y}(1 - \cos {{q}_{6}}) + s_{5}^{z}\sin {{q}_{6}}) + n_{0}^{y}({{(s_{5}^{y})}^{2}}(1 - \cos {{q}_{6}}) + \cos {{q}_{6}}) \\ \, - n_{0}^{z}(s_{5}^{x}\sin {{q}_{6}} - s_{5}^{y}s_{5}^{z}(1 - \cos {{q}_{6}})),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\ \end{gathered} $$
$$\begin{gathered} {{b}_{2}} = n_{0}^{x}(s_{5}^{x}s_{5}^{y}(\cos {{q}_{6}} - 1) + s_{5}^{y}\sin {{q}_{6}}) - n_{0}^{y}(s_{5}^{x}\sin {{q}_{6}} + s_{5}^{y}s_{5}^{z}(1 - \cos {{q}_{6}})) \\ \, + n_{0}^{z}({{(s_{5}^{z})}^{2}}(\cos {{q}_{6}} - 1) - \cos {{q}_{6}}),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\ \end{gathered} $$
$${{c}_{2}} = - {{n}^{y}},$$
$$\begin{gathered} {{a}_{3}} = n_{0}^{x}(s_{5}^{x}s_{5}^{z}(1 - \cos {{q}_{6}}) - s_{5}^{y}\sin {{q}_{6}}) + n_{0}^{y}(s_{5}^{x}\sin {{q}_{6}} + s_{5}^{y}s_{5}^{z}(1 - \cos {{q}_{6}})) \\ \, + n_{0}^{z}({{(s_{5}^{z})}^{2}}(1 - \cos {{q}_{6}}) + \cos {{q}_{6}}),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\ \end{gathered} $$
$$\begin{gathered} {{b}_{3}} = n_{0}^{x}(s_{5}^{x}s_{5}^{y}(1 - \cos {{q}_{6}}) + s_{5}^{z}\sin {{q}_{6}}) + n_{0}^{y}({{(s_{5}^{y})}^{2}}(1 - \cos {{q}_{6}}) + \cos {{q}_{6}}) \\ \, - n_{0}^{z}(s_{5}^{x}\sin {{q}_{6}} - s_{5}^{y}s_{5}^{z}(1 - \cos {{q}_{6}})),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\ \end{gathered} $$
$${{c}_{3}} = - {{n}^{z}},$$
$${{a}_{4}} = s_{4}^{x},$$
$$\begin{gathered} {{b}_{4}} = p_{{S0}}^{x}(({{(s_{5}^{y})}^{2}} + {{(s_{5}^{z})}^{2}})(\cos {{q}_{6}} - 1) + 1) + p_{{S0}}^{y}(s_{5}^{x}s_{5}^{y}(1 - \cos {{q}_{6}}) - s_{5}^{z}\sin {{q}_{6}}) \hfill \\ \,\,\,\,\, + p_{{S0}}^{z}(s_{5}^{x}s_{5}^{z}(1 - \cos {{q}_{6}}) + s_{5}^{y}\sin {{q}_{6}}) + r_{5}^{x}({{(s_{5}^{y})}^{2}} + {{(s_{5}^{z})}^{2}})(1 - \cos {{q}_{6}}) \hfill \\ \,\,\,\,\, + r_{5}^{y}(s_{5}^{x}s_{5}^{y}(\cos {{q}_{6}} - 1) + s_{5}^{z}\sin {{q}_{6}}) + r_{5}^{z}(s_{5}^{x}s_{5}^{z}(\cos {{q}_{6}} - 1) - s_{5}^{y}\sin {{q}_{6}}) - p_{S}^{x}, \hfill \\ \end{gathered} $$
$${{a}_{5}} = 1,$$
$$\begin{gathered} {{b}_{5}} = p_{{S0}}^{x}(s_{5}^{x}s_{5}^{y}(1 - \cos {{q}_{6}})\cos \varphi + s_{5}^{x}s_{5}^{z}(\cos {{q}_{6}} - 1)\sin \varphi + s_{5}^{y}\sin {{q}_{6}}\sin \varphi + s_{5}^{z}\sin {{q}_{6}}\cos \varphi ) \hfill \\ \,\,\,\, + p_{{S0}}^{y}( - s_{5}^{x}\sin {{q}_{6}}\sin \varphi + {{(s_{5}^{y})}^{2}}(1 - \cos {{q}_{6}})\cos \varphi + s_{5}^{y}s_{5}^{z}(\cos {{q}_{6}} - 1)\sin \varphi + \cos {{q}_{6}}\cos \varphi ) \hfill \\ \,\,\,\, + p_{{S0}}^{z}( - s_{5}^{x}\sin {{q}_{6}}\sin \varphi + s_{5}^{y}s_{5}^{z}(1 - \cos {{q}_{6}})\cos \varphi + {{(s_{5}^{z})}^{2}}(\cos {{q}_{6}} - 1)\sin \varphi + \cos {{q}_{6}}\cos \varphi ) \hfill \\ \,\,\,\, + {{q}_{5}}(s_{4}^{y}\cos \varphi - s_{4}^{z}\sin \varphi ) + r_{3}^{y}(1 - \cos \varphi ) + r_{3}^{z}\sin \varphi \hfill \\ \,\,\,\, + r_{5}^{x}(s_{5}^{x}(\cos {{q}_{6}} - 1)(s_{5}^{y}\cos \varphi - s_{5}^{z}\sin \varphi ) - s_{5}^{y}\sin {{q}_{6}}\sin \varphi - s_{5}^{z}\sin {{q}_{6}}\cos \varphi ) \hfill \\ \,\,\,\, + r_{5}^{y}(s_{5}^{x}\sin {{q}_{6}}\sin \varphi + ({{(s_{5}^{y})}^{2}}\cos \varphi - s_{5}^{y}s_{5}^{z}\sin \varphi - \cos \varphi )(\cos {{q}_{6}} - 1)) \hfill \\ \,\,\,\, + r_{5}^{z}(s_{5}^{x}\sin {{q}_{6}}\cos \varphi + (s_{5}^{y}s_{5}^{z}\cos \varphi - {{(s_{5}^{z})}^{2}}\sin \varphi + \sin \varphi )(\cos {{q}_{6}} - 1)) - p_{S}^{y}, \hfill \\ \end{gathered} $$
$${{a}_{6}} = 1,$$
$$\begin{gathered} {{b}_{6}} = p_{{S0}}^{x}(s_{5}^{x}s_{5}^{y}(1 - \cos {{q}_{6}})\sin \varphi + s_{5}^{x}s_{5}^{z}(1 - \cos {{q}_{6}})\cos \varphi - s_{5}^{y}\sin {{q}_{6}}\cos \varphi + s_{5}^{z}\sin {{q}_{6}}\sin \varphi ) \hfill \\ \,\,\,\, + p_{{S0}}^{y}(s_{5}^{x}\sin {{q}_{6}}\cos \varphi + {{(s_{5}^{y})}^{2}}(1 - \cos {{q}_{6}})\sin \varphi + s_{5}^{y}s_{5}^{z}(1 - \cos {{q}_{6}})\cos \varphi + \cos {{q}_{6}}\sin \varphi ) \hfill \\ \,\,\,\, + p_{{S0}}^{z}( - s_{5}^{x}\sin {{q}_{6}}\sin \varphi + s_{5}^{y}s_{5}^{z}(1 - \cos {{q}_{6}})\sin \varphi + {{(s_{5}^{z})}^{2}}(1 - \cos {{q}_{6}})\cos \varphi + \cos {{q}_{6}}\cos \varphi ) \hfill \\ \,\,\,\, + {{q}_{5}}(s_{4}^{y}\sin \varphi + s_{4}^{z}\cos \varphi ) - r_{3}^{y}\sin \varphi + r_{3}^{z}(1 - \cos \varphi ) \hfill \\ \,\,\,\, + r_{5}^{x}(s_{5}^{x}(\cos {{q}_{6}} - 1)(s_{5}^{y}\sin \varphi + s_{5}^{z}\cos \varphi ) + s_{5}^{y}\sin {{q}_{6}}\cos \varphi - s_{5}^{z}\sin {{q}_{6}}\sin \varphi \hfill \\ \,\,\,\, + r_{5}^{y}( - s_{5}^{x}\sin {{q}_{6}}\cos \varphi + ({{(s_{5}^{y})}^{2}}\sin \varphi + s_{5}^{y}s_{5}^{z}\cos \varphi - \sin \varphi )(\cos {{q}_{6}} - 1)) \hfill \\ \,\,\,\, + r_{5}^{z}(s_{5}^{x}\sin {{q}_{6}}\sin \varphi + (s_{5}^{y}s_{5}^{z}\sin \varphi + {{(s_{5}^{z})}^{2}}\cos \varphi - \cos \varphi )(\cos {{q}_{6}} - 1)) - p_{S}^{z}, \hfill \\ \end{gathered} $$
$${{a}_{7}} = - \frac{{p_{{Aj}}^{y} - p_{{Bj}}^{y}}}{{p_{{Aj}}^{z} - p_{{Bj}}^{z}}},$$
$${{b}_{7}} = \frac{{{{{(p_{{Aj}}^{y})}}^{2}} + {{{(p_{{Aj}}^{z})}}^{2}} - {{{(p_{{Bj}}^{y})}}^{2}} - {{{(p_{{Bj}}^{z})}}^{2}} - l_{{AjCj}}^{2} + l_{{BjCj}}^{2}}}{{2(p_{{Aj}}^{z} - p_{{Bj}}^{z})}},$$
$${{a}_{8}} = 1 + a_{7}^{2},$$
$${{b}_{8}} = - 2p_{{Aj}}^{y} - 2{{a}_{7}}(p_{{Aj}}^{z} - {{b}_{7}}),$$
$${{c}_{8}} = {{(p_{{Aj}}^{z} - {{b}_{7}})}^{2}} - l_{{AjCj}}^{2},$$

where \(p_{S}^{x}\), \(p_{S}^{y}\), \(p_{S}^{z}\) and nx, ny, nz are the corresponding components of vectors pS and \({\mathbf{\hat {n}}}\); \(p_{{S0}}^{x}\), \(p_{{S0}}^{y}\), \(p_{{S0}}^{z}\) and \(n_{0}^{x}\), \(n_{0}^{y}\), \(n_{0}^{z}\) are the same components in the initial configuration of the manipulator (defined by matrix MS in Eq. (3)); \(s_{4}^{x}\), …, \(s_{5}^{z}\) are the corresponding components of vectors \({{{\mathbf{\hat {s}}}}_{4}}\) and \({{{\mathbf{\hat {s}}}}_{5}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, A.V., Fomin, A.S. Inverse Kinematics of a 5-DOF Hybrid Manipulator. Autom Remote Control 84, 281–293 (2023). https://doi.org/10.1134/S0005117923030037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923030037

Keywords:

Navigation