Skip to main content
Log in

The Interaction of Economic Agents in Cournot Duopoly Models under Ecological Conditions: A Comparison of Organizational Modes

  • CONTROL IN SOCIAL ECONOMIC SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper presents a comparative analysis of the efficiency of organizational modes (information structures) for the interaction of economic agents in static and dynamic Cournot duopoly models. We compare the independent behavior of equal players, their cooperation, and the hierarchy formalized as Germeier games. The efficiency of individual players and the entire society is quantitatively assessed using the private and social relative efficiency indices. The ecological safety conditions of the system are investigated. An organizational and economic interpretation of the results is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Algorithmic Game Theory, Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V., Eds., Cambridge University Press, 2007.

    Google Scholar 

  2. Johari, R. and Tsitsiklis, J.N., Efficiency Loss in a Network Resource Allocation Game, Math. Oper. Res., 2004, no. 29(3), pp. 407–435.

  3. Papadimitriou, C.H., Algorithms, Games, and the Internet, Proc. 33rd Symp. Theory of Computing, 2001, pp. 749–753.

  4. Roughgarden, T., Selfish Routing and the Price of Anarchy, MIT Press, 2005.

    Google Scholar 

  5. Basar, T. and Zhu, Q., Prices of Anarchy, Information, and Cooperation in Differential Games, J. Dynam. Games and Appl., 2011, no. 1, pp. 50–73.

  6. Aubin, J.-P., Viability Theory, Springer-Verlag, 1991.

    MATH  Google Scholar 

  7. Cairns, R.D. and Martinet, V., An Environmental-Economic Measure of Sustainable Development, Eur. Econom. Rev., 2014, no. 69, pp. 4–17.

  8. Doyen, L. and Martinet, V., Maximin, Viability and Sustainability, J. Econ. Dynam. Control, 2012, vol. 36(9), pp. 1414–1430.

    Article  MathSciNet  MATH  Google Scholar 

  9. Moulin, H., Game Theory for the Social Sciences, New York University Press, 1986.

    Google Scholar 

  10. Maskin, E. and Tirole, J., A Theory of Dynamic Oligopoly, III. Cournot Competition, Eur. Econ. Rev., 1987, no. 31, pp. 947–968.

  11. Bischi, G.I. and Naimzada, A., Global Analysis of a Dynamic Duopoly Game with Bounded Rationality, in Advances in Dynamic Games and Applications, Filar, J. , Eds., Birkhauser, 2000, pp. 361–385.

    MATH  Google Scholar 

  12. Geras’kin, M.I., Modeling Reflexion in the Non-Linear Model of the Stakelberg Three-Agent Oligopoly for the Russian Telecommunication Market, Autom. Remote Control, 2018, vol. 79, no. 5, pp. 841–859.

    Article  MathSciNet  MATH  Google Scholar 

  13. Geras’kin, M.I., Reflexive Games in the Linear Stackelberg Duopoly Models under Incoincident Reflexion Ranks, Autom. Remote Control, 2020, vol. 81, no. 2, pp. 302–319.

    Article  MathSciNet  MATH  Google Scholar 

  14. Geras’kin, M.I., The Properties of Conjectural Variations in the Nonlinear Stackelberg Oligopoly Model, Autom. Remote Control, 2020, vol. 81, no. 6, pp. 1051–1072.

    Article  MathSciNet  Google Scholar 

  15. Geras’kin, M.I., Approximate Calculation of Equilibria in the Nonlinear Stackelberg Oligopoly Model: A Linearization Based Approach, Autom. Remote Control, 2020, vol. 81, no. 9, pp. 1659–1678.

    Article  MathSciNet  MATH  Google Scholar 

  16. Geras’kin, M.I., Reflexive Analysis of Equilibria in a Triopoly Game with Linear Cost Functions of the Agents, Autom. Remote Control, 2022, vol. 83, no. 3, pp. 389–406.

    Article  MathSciNet  Google Scholar 

  17. Algazin, G.I. and Algazina, Yu.G., Reflexive Dynamics in the Cournot Oligopoly under Uncertainty, Autom. Remote Control, 2020, vol. 81, no. 2, pp. 287–301.

    Article  MathSciNet  MATH  Google Scholar 

  18. Algazin, G.I. and Algazina, Yu.G., Reflexion Processes and Equilibrium in an Oligopoly Model with a Leader, Autom. Remote Control, 2020, vol. 81, no. 7, pp. 1258–1270.

    Article  MathSciNet  MATH  Google Scholar 

  19. Algazin, G.I. and Algazina, Yu.G., To the Analytical Investigation of the Convergence Conditions of the Processes of Reflexive Collective Behavior in Oligopoly Models, Autom. Remote Control, 2022, vol. 83, no. 3, pp. 367–388.

    Article  MathSciNet  MATH  Google Scholar 

  20. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., The Mathematical Theory of Optimal Processes, New York–London: Wiley, 1962.

    MATH  Google Scholar 

  21. Dockner, E., Jorgensen, S., Long, N.V., and Sorger, G., Differential Games in Economics and Management Science, Cambridge University Press, 2000.

    Book  MATH  Google Scholar 

  22. Ugol’nitskii, G.A. and Usov, A.B., Equilibria in Models of Hierarchically Organized Dynamic Systems with Regard to Sustainable Development Conditions, Autom. Remote Control, 2014, vol. 75, no. 6, pp. 1055–1068.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ougolnitsky, G.A. and Usov, A.B., Solution Algorithms for Differential Models of Hierarchical Control Systems, Autom. Remote Control, 2016, vol. 77, no. 5, pp. 872–880.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ougolnitsky, G.A. and Usov, A.B., Computer Simulations as a Solution Method for Differential Games, in Computer Simulations: Advances in Research and Applications, Pfeffer, M.D. and Bachmaier, E., Eds., New York: Nova Science Publishers, 2018, pp. 63–106.

    Google Scholar 

  25. Germeier, Yu.B., Non-Antagonistic Games, Springer Dordrecht, 1986.

    Google Scholar 

  26. Sovremennoe sostoyanie teorii issledovaniya operatsii (The Current State of Operations Research), Moiseev, N.N., Ed., Moscow: Nauka, 1979.

    MATH  Google Scholar 

  27. Ougolnitsky, G.A., Teoriya upravleniya ustoichivym razvitiem aktivnykh sistem (Sustainable Management of Active Systems), Rostov-on-Don: Southern Federal University, 2016.

    Google Scholar 

  28. Bressan, A., Noncooperative Differential Games, Milan J. Math., 2011, no. 2, pp. 357–427.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Ougolnitsky or A. B. Usov.

Additional information

This paper was recommended for publication by D.A. Novikov, a member of the Editorial Board

APPENDIX

APPENDIX

Let us elucidate the data from Table 1. To find a Nash equilibrium in model (1)–(2), we solve the system  \(\frac{{\partial {{g}_{i}}}}{{\partial {{u}_{i}}}}\) = 0, i = 1, 2. As a result, \(\left\{ \begin{gathered} 1{\text{/}}2 - 2{{u}_{1}} - {{u}_{2}} = 0 \hfill \\ 1{\text{/}}2 - {{u}_{1}} - 2{{u}_{2}} = 0, \hfill \\ \end{gathered} \right.\) u1 = u2 = 1/6.

The Hessian matrix for this system, \(\left\| {\begin{array}{*{20}{c}} { - 2 - 1} \\ { - 1 - 2} \end{array}} \right\|\), is negative definite. Therefore, \(u_{1}^{{NE}}\) = \(u_{2}^{{NE}}\) = 1/6, \(g_{1}^{{NE}}\) = \(g_{2}^{{NE}}\) = 1/36. Under cooperation, the players jointly maximize the function g(\(\bar {u}\)) = (1/2 – \(\bar {u}\))\(\bar {u}\), where \(\bar {u}\) = u1 + u2. We have \(\frac{{\partial g}}{{\partial \bar {u}}}\) = 1/2 – 2\(\bar {u}\) = 0, \(\bar {u}\) = 1/4, and \(\frac{{{{\partial }^{2}}g}}{{\partial {{{\bar {u}}}^{2}}}}\) = –2 < 0. Therefore, the set of Pareto-optimal cooperative solutions is the singleton \({{\bar {u}}^{C}}\) = 1/4; the corresponding equal imputation is \(u_{1}^{C}\) = \(u_{2}^{C}\) = 1/8 and the payoffs are \(g_{1}^{C}\) = \(g_{2}^{C}\) = 1/32. Assume that player 1 is a Leader in the Stackelberg sense. From the condition \(\frac{{\partial {{g}_{2}}}}{{\partial {{u}_{2}}}}\) = 0 the optimal response of player 2 has the form u2(u1) = 1/4 – u1/2. Substituting it into g1 gives  g1(u1, u2(u1)) = (1/4 – u1/2)u1. The condition  \(\frac{{\partial {{g}_{1}}}}{{\partial {{u}_{1}}}}\) = 0 yields u1 = 1/4. Since \(\frac{{{{\partial }^{2}}{{g}_{1}}}}{{\partial u_{1}^{2}}}\) = –1 < 0, we obtain \(u_{1}^{{S{{T}_{1}}}}\) = 1/4, \(u_{2}^{{S{{T}_{1}}}}\) = u2(\(u_{1}^{{S{{T}_{1}}}}\)) = 1/8, \(g_{1}^{{S{{T}_{1}}}}\) = 1/32, and \(g_{2}^{{S{{T}_{1}}}}\) = 1/64.

Finally, let us solve the game (1)–(2) as the Germeier game Γ2 [25]. We have

$$u_{1}^{D}({{u}_{2}}) = \mathop {\operatorname{Arg} \max }\limits_{0 \leqslant {{u}_{1}} \leqslant 1/2} {{g}_{1}}({{u}_{1}},{{u}_{2}}) = {\text{1/4}} - {{u}_{2}}{\text{/}}2,$$
$$u_{1}^{P}({{u}_{2}}) = \mathop {\operatorname{Arg} \min }\limits_{0 \leqslant {{u}_{1}} \leqslant 1/2} {{g}_{2}}({{u}_{1}},{{u}_{2}}) \equiv {\text{1/2}}{\text{,}}$$
$${{L}_{2}} = \mathop {\max }\limits_{0 \leqslant {{u}_{2}} \leqslant 1/2} \left( {u_{1}^{P}({{u}_{2}}),{{u}_{2}}} \right) = \mathop {\max }\limits_{0 \leqslant {{u}_{2}} \leqslant 1/2} \left( { - u_{2}^{2}} \right) = 0,$$
$${{E}_{2}} = \left\{ {{{u}_{2}} \in {{U}_{2}}:{{g}_{2}}\left( {u_{1}^{P}({{u}_{2}}),{{u}_{2}}} \right) = {{L}_{2}}} \right\} = \{ 0\} ,$$
$${{D}_{2}} = \{ ({{u}_{1}},{{u}_{2}}):{{g}_{2}}({{u}_{1}},{{u}_{2}}) > 0\} ,$$
$${{K}_{2}} = \mathop {\min }\limits_{{{u}_{2}} \in {{E}_{2}}} \mathop {\max }\limits_{0 \leqslant {{u}_{1}} \leqslant 1/2} {{g}_{1}}({{u}_{1}},{{u}_{2}}) = \mathop {\max }\limits_{0 \leqslant {{u}_{1}} \leqslant 1/2} (1 - {{u}_{1}}){{u}_{1}} = 1{\text{/}}16.$$

To find the values K1 = \(\mathop {\sup }\limits_{{{D}_{2}}} {{g}_{1}}({{u}_{1}},{{u}_{2}})\), it is necessary to solve the optimization problem (1/2 – u1u2)u1 → max subject to the constraints (1/2 – u1u2)u2 > 0 and 0 ≤ ui ≤ 1/2. Obviously, \(u_{2}^{\varepsilon } = \varepsilon \) and \(u_{1}^{\varepsilon }\) = 1/4. Then K1 = 1/16 – ε/4 < K2 and, therefore, the ε-optimal strategy of the Leader is \(\tilde {u}_{1}^{\varepsilon }({{u}_{2}})\) = \(\left\{ \begin{gathered} {\text{1/4}}\;{\text{if}}\;{{u}_{2}} = 0 \hfill \\ {\text{1/2}}\;{\text{otherwise}}{\text{.}} \hfill \\ \end{gathered} \right.\) In this case, \(g_{1}^{{IS{{T}_{1}}}}\) = 1/16 and \(g_{2}^{{IS{{T}_{1}}}}\) = 0.

Note  that \({{\bar {u}}^{{NE}}}\) = 1/3, \({{\bar {u}}^{C}}\) = 1/4, \({{\bar {u}}^{{ST}}}\) = 3/8, and \({{\bar {u}}^{{IST}}}\) = 1/4. Thus, we have arrived at the data from Table 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ougolnitsky, G.A., Usov, A.B. The Interaction of Economic Agents in Cournot Duopoly Models under Ecological Conditions: A Comparison of Organizational Modes. Autom Remote Control 84, 153–166 (2023). https://doi.org/10.1134/S0005117923020078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923020078

Keywords:

Navigation