Skip to main content
Log in

Stability Analysis of Mechanical Systems with Highly Nonlinear Positional Forces under Distributed Delay

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper considers mechanical systems with linear velocity forces and highly non-linear positional forces containing distributed-delay terms. Asymptotic stability conditions of system equilibria are proved using Lyapunov’s direct method and the decomposition method. The developed approaches are applied to the monoaxial stabilization of a solid body. The theoretical outcomes are confirmed by computer simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Chernous’ko, F.L., Anan’evskii, I.M., and Reshmin, S.A., Metody upravleniya nelineinymi mekhanicheskimi sistemami (Control Methods for Nonlinear Mechanical Systems), Moscow: Fizmatlit, 2006.

    Google Scholar 

  2. Anan’evskii, I.M. and Reshmin, S.A., Decomposition-based continuous control of mechanical systems, J. Comput. Syst. Sci. Int., 2014, vol. 53, pp. 473–486. https://doi.org/10.1134/S1064230714040029

    Article  MathSciNet  MATH  Google Scholar 

  3. Tkhai, V.N., Stabilizing the oscillations of a controlled mechanical system with n degrees of freedom, Autom. Remote Control, 2020, vol. 81, no. 9, pp. 1637–1646.

    Article  MathSciNet  MATH  Google Scholar 

  4. Su, Y.X. and Zheng, C.H., PID control for global finite-time regulation of robotic manipulators, International J. of Systems Science, 2017, vol. 48, no. 3, pp. 547–558. https://doi.org/10.1080/00207721.2016.1193256

    Article  MathSciNet  MATH  Google Scholar 

  5. Sedighi, H.M. and Daneshmand, F., Non-linear transversely vibrating beams by the homotopy perturbation method with an auxiliary term, J. of Applied and Computational Mechanics, 2015, vol. 1, no. 1, pp. 1–9.

    Google Scholar 

  6. Kharitonov, V.L., Time-Delay Systems. Lyapunov Functionals and Matrices, Basel: Birkhäuser, 2013.

    Book  MATH  Google Scholar 

  7. Fridman, E., Introduction to Time-Delay Systems: Analysis and Control, Basel: Birkhäuser, 2014.

    Book  MATH  Google Scholar 

  8. Fridman, E., Tutorial on Lyapunov-based methods for time-delay systems, European J. of Control, 2014, vol. 20, pp. 271–283.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zubov, V.I., Analiticheskaya dinamika giroskopicheskikh sistem (Analytical Dynamics of Gyroscopic Systems), Leningrad: Sudostroenie, 1970.

    Google Scholar 

  10. Matrosov, V.M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh system (The Method of Vector Lyapunov Functions: Analysis of Dynamical Properties of Nonlinear Systems), Moscow: Fizmatlit, 2001.

    Google Scholar 

  11. Pyatnitskii, E.S., The decomposition principle in the control of mechanical systems, Dokl. Math., 1988, vol. 33, no. 5, pp. 345–346.

    MathSciNet  Google Scholar 

  12. Pyatnitskii, E.S., Design of hierarchical control systems for mechanical and electromechanical processes by decomposition. I, Autom. Remote Control, 1989, vol. 50, no. 1, pp. 64–73.

    MathSciNet  Google Scholar 

  13. Pyatnitskii, E.S., Design of hierarchical control systems for mechanical and electromechanical processes by decomposition. II, Autom. Remote Control, 1989, vol. 50, no. 2, pp. 175–186.

    MathSciNet  Google Scholar 

  14. Matyukhin, V.I., Motion stability of manipulator robots in decomposition mode, Autom. Remote Control, 1989, vol. 50, no. 3, pp. 314–323.

    MathSciNet  MATH  Google Scholar 

  15. Matyukhin, V.I. and Pyatnitskii, E.S., Controlling the motion of manipulation robots through decomposition with an allowance for the dynamics of actuators, Autom. Remote Control, 1989, vol. 50, no. 9, pp. 1201–1212.

    Google Scholar 

  16. Reshmin, S.A., Control design for a two-link manipulator, Izv. Ross. Akad. Nauk. Teor. Sist. Upravlen., 1997, no. 2, pp. 146–150.

  17. Anan’evskii, I.M. and Reshmin, S.A., The decomposition method in the tracking problem of mechanical systems, Izv. Ross. Akad. Nauk. Teor. Sist. Upravlen., 2002, no. 5, pp. 25–32.

  18. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.S., et al., Synthesis of decoupling laws for attitude stabilization of a spacecraft, J. Comput. Syst. Sci. Int., 2012, vol. 51, pp. 80–96. https://doi.org/10.1134/S1064230711060189

    Article  MathSciNet  MATH  Google Scholar 

  19. Kosov, A.A., Stability analysis of singular systems by the method of Lyapunov vector functions, Vestn. Sankt-Peterb. Univ. Ser. 10, 2005, no. 4, pp. 123–129.

  20. Aleksandrov, A.Yu., Kosov, A.A., and Chen, Ya., Stability and stabilization of mechanical systems with switching, Autom. Remote Control, 2011, vol. 72, no. 6, pp. 1143–1154.

    Article  MathSciNet  MATH  Google Scholar 

  21. Aleksandrov, A.Yu. and Kosov, A.A., The Stability and stabilization of non-linear, non-stationary mechanical systems, Journal of Applied Mathematics and Mechanics, 2010, vol. 74, no. 5, pp. 553–562.

    Article  MathSciNet  MATH  Google Scholar 

  22. Aleksandrov, A.Yu. and Stepenko, N.A., Stability analysis of gyroscopic systems with delay under synchronous and asynchronous switching, J. Appl. Comput. Mech., 2022, vol. 8, no. 3, pp. 1113–1119.

    Google Scholar 

  23. Zhang, X., Chen, X., Zhu, G., and Su, C.-Y., Output feedback adaptive motion control and its experimental verification for time-delay non-linear systems with asymmetric hysteresis, IEEE Transactions on Industrial Electronics, 2020, vol. 67, no. 8, pp. 6824–6834.

    Article  Google Scholar 

  24. Formal’sky, A.M., On a modification of the PID controller, Dynamics and Control, 1997, vol. 7, pp. 269–277.

    Article  MathSciNet  MATH  Google Scholar 

  25. Anan’evskii, I.M. and Kolmanovskii, V.B., Stability of some control systems with aftereffect, Differ. Equations, 1989, vol. 25, no. 11, pp. 1287–1290.

    MathSciNet  Google Scholar 

  26. Anan’evskii, I.M. and Kolmanovskii, V.B., On stabilization of some control systems with an aftereffect, Autom. Remote Control, 1989, no. 9, pp. 1174–1181.

  27. Pavlikov, S.V., On motion stabilization of controlled mechanical systems with a delayed controller, Dokl. Ross. Akad. Nauk, 2007, vol. 412, no. 2, pp. 176–178.

    MathSciNet  MATH  Google Scholar 

  28. Pavlikov, S.V., Constant-sign Lyapunov functionals in the problem of the stability of a functional differential equation, Journal of Applied Mathematics and Mechanics, 2007, vol. 71, no. 3, pp. 339–350.

    Article  MathSciNet  Google Scholar 

  29. Shen, J. and Lam, J., Decay rate constrained stability analysis for positive systems with discrete and distributed delays, Systems Science and Control Engineering, 2014, vol. 2, no. 1, pp. 7–12. https://doi.org/10.1080/21642583.2013.870054

    Article  Google Scholar 

  30. Aleksandrov, A.Yu. and Tikhonov, A.A., Stability analysis of mechanical systems with distributed delay via decomposition, Vestn. St. Petersburg Univ. Appl. Math. Comp. Sci. Control Proc., 2021, vol. 17, no. 1, pp. 13–26. https://doi.org/10.21638/11701/spbu10.2021.102

    Article  MathSciNet  Google Scholar 

  31. Zubov, V.I., The canonical structure of a vector force field, in Problemy mekhaniki tverdogo deformiruemogo tela (Problems of Solid Deformable Mechanics), Leningrad: Sudostroenie, 1970, pp. 167–170.

    Google Scholar 

  32. Zubov, V.I., Lektsii po teorii upravleniya (Lectures on Control Theory), Moscow: Nauka, 1975.

    Google Scholar 

  33. Samsonov, V.A., Dosaev, M.Z., and Selyutskiy, Y.D., Methods of qualitative analysis in the problem of rigid body motion in medium, International J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, vol. 21, no. 10, pp. 2955–2961.

    MathSciNet  MATH  Google Scholar 

  34. Kosjakov, E.A. and Tikhonov, A.A., Differential equations for librational motion of gravity-oriented rigid body, International J. of Non-Linear Mechanics, 2015, vol. 73, pp. 51–57. https://doi.org/10.1016/j.ijnonlinmec.2014.11.006

    Article  Google Scholar 

  35. Tikhonov, A.A., Natural magneto-velocity coordinate system for satellite attitude stabilization: The concept and kinematic analysis, J. of Applied and Computational Mechanics, 2021, vol. 7, no. 4, pp. 2113–2119. https://doi.org/10.22055/JACM.2021.37817.3094

    Article  Google Scholar 

  36. Aleksandrov, A.Yu. and Tikhonov, A.A., Monoaxial electrodynamic stabilization of an artificial Earth satellite in the orbital coordinate system via control with distributed delay, IEEE Access, 2021, vol. 9, pp. 132623–132630. https://doi.org/10.1109/ACCESS.2021.3115400

    Article  Google Scholar 

  37. Tikhonov, A.A., Resonant phenomena in the vibrations of a gravitationally-oriented solid, part 4: Multifrequency resonances, Vestn. Sankt-Peterb. Univ. Ser. 1, 2000, no. 1, pp. 131–137.

  38. Efimov, D. and Aleksandrov, A., Analysis of robustness of homogeneous systems with time delays using Lyapunov–Krasovskii functionals, Int. J. Robust Nonlinear Control, 2021, vol. 31, pp. 3730–3746. https://doi.org/10.1002/rnc.5115

    Article  MathSciNet  Google Scholar 

  39. Rosier, L., Homogeneous Lyapunov function for homogeneous continuous vector field, Systems Control Lett., 1992, vol. 19, pp. 467–473.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The results of Sections 3 and 4 were obtained under the support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-573) at the Institute for Problems in Mechanical Engineering, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Aleksandrov or A. A. Tikhonov.

Additional information

This paper was recommended for publication by L.B. Rapoport, a member of the Editorial Board

APPENDIX

APPENDIX

Proof of Theorem 1. Using the approaches from [2022, 38], we construct the Lyapunov–Krasovskii functional

$$\begin{gathered} V({{q}_{t}}) = \frac{1}{2}\lambda {{{\dot {q}}}^{ \top }}(t)A\dot {q}(t) + \frac{1}{2}{{q}^{ \top }}(t)Bq(t) + {{q}^{ \top }}(t)A\dot {q}(t) - {{q}^{ \top }}(t)\int\limits_{t - \tau }^t {(\xi - t + \tau )\frac{{\partial \tilde {\Pi }(q(\xi ))}}{{\partial q}}} {\kern 1pt} d\xi \\ + \;\int\limits_{t - \tau }^t {(\alpha + \beta (\xi - t + \tau ))\left\| {q(\xi )} \right\|{{{\kern 1pt} }^{{\mu + 1}}}d\xi } , \\ \end{gathered} $$
(A.1)

where λ, α, and β are positive parameters. Differentiating it along the trajectories of system (3) yields

$$\dot {V} = - \lambda {{\dot {q}}^{ \top }}(t)B\dot {q}(t) + {{\dot {q}}^{ \top }}(t)A\dot {q}(t) - \lambda {{\dot {q}}^{ \top }}(t)\left( {\frac{{\partial \Pi (q(t))}}{{\partial q}} + \int\limits_{t - \tau }^t {\frac{{\partial \tilde {\Pi }(q(\xi ))}}{{\partial q}}d\xi } + P(q(t))q(t)} \right)$$
$$ - \;{{q}^{ \top }}(t)\left( {\frac{{\partial \Pi (q(t))}}{{\partial q}} + \tau \frac{{\partial \tilde {\Pi }(q(t))}}{{\partial q}}} \right) - {{\dot {q}}^{ \top }}(t)\int\limits_{t - \tau }^t {(\xi - t + \tau )\frac{{\partial \tilde {\Pi }(q(\xi ))}}{{\partial q}}d\xi } $$
$$ - \;\beta \int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{{\mu + 1}}}d\xi + (\alpha + \beta \tau ){{{\left\| {q(t)} \right\|}}^{{\mu + 1}}} - \alpha {{{\left\| {q(t - \tau )} \right\|}}^{{\mu + 1}}}} .$$

Due to the properties of homogeneous functions [32], we obtain the upper bounds

$$\begin{gathered} \lambda {{c}_{1}}{{\left\| {\dot {q}(t)} \right\|}^{2}} + {{c}_{2}}{{\left\| {q(t)} \right\|}^{2}} - {{c}_{3}}\left\| {q(t)} \right\|\left\| {\dot {q}(t)} \right\| - {{c}_{4}}\tau \left\| {q(t)} \right\|\int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{\mu }}d\xi } + \alpha \int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{{\mu + 1}}}d\xi } \;\leqslant \;V({{q}_{t}}) \\ \leqslant \;\lambda {{c}_{5}}{{\left\| {\dot {q}(t)} \right\|}^{2}} + {{c}_{6}}{{\left\| {q(t)} \right\|}^{2}} + {{c}_{3}}\left\| {q(t)} \right\|\left\| {\dot {q}(t)} \right\| + {{c}_{4}}\tau \left\| {q(t)} \right\|\int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{\mu }}d\xi } + (\alpha + \beta \tau )\int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{{\mu + 1}}}d\xi } , \\ \end{gathered} $$
$$\begin{gathered} \dot {V}\;\leqslant \; - {\kern 1pt} (\lambda {{c}_{7}} - {{c}_{8}}){{\left\| {\dot {q}(t)} \right\|}^{2}} + \lambda \left\| {\dot {q}(t)} \right\|\left( {{{c}_{9}}{{{\left\| {q(t)} \right\|}}^{\mu }} + {{c}_{{10}}}\int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{\mu }}d\xi } + {{p}_{0}}{{{\left\| {q(t)} \right\|}}^{\sigma }}} \right) - {{c}_{{11}}}{{\left\| {q(t)} \right\|}^{{\mu + 1}}} \\ + \;{{c}_{{12}}}\tau \left\| {\dot {q}(t)} \right\|\int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{\mu }}d\xi } - \beta \int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{{\mu + 1}}}d\xi } + (\alpha + \beta \tau ){{\left\| {q(t)} \right\|}^{{\mu + 1}}} - \alpha {{\left\| {q(t - \tau )} \right\|}^{{\mu + 1}}}. \\ \end{gathered} $$

Here, ck are positive constants, k = 1, …, 12.

By Young’s inequality [7], for \({{\left\| {{{q}_{t}}} \right\|}_{\tau }} < \delta \), the positive numbers λ, α, β, and δ can be chosen so that

$$\begin{gathered} \frac{1}{2}\left( {\lambda {{c}_{1}}{{{\left\| {\dot {q}(t)} \right\|}}^{2}} + {{c}_{2}}{{{\left\| {q(t)} \right\|}}^{2}} + \alpha \int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{{\mu + 1}}}d\xi } } \right)\;\leqslant \;V({{q}_{t}}) \\ \leqslant \;2\left( {\lambda {{c}_{5}}{{{\left\| {\dot {q}(t)} \right\|}}^{2}} + {{c}_{6}}{{{\left\| {q(t)} \right\|}}^{2}} + (\alpha + \beta \tau )\int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{{\mu + 1}}}d\xi } } \right), \\ \end{gathered} $$
(A.2)
$$\dot {V}\;\leqslant \; - {\kern 1pt} {\kern 1pt} \frac{1}{2}\left( {\lambda {{c}_{7}}{{{\left\| {\dot {q}(t)} \right\|}}^{2}} + {{c}_{{11}}}{{{\left\| {q(t)} \right\|}}^{{\mu + 1}}} + \beta \int\limits_{t - \tau }^t {{{{\left\| {q(\xi )} \right\|}}^{{\mu + 1}}}d\xi } } \right).$$
(A.3)

Hence, (A.1) is a Lyapunov–Krasovskii functional of the full type that satisfies the conditions of the asymptotic stability theorem [6, p. 22].

The proof of Theorem 1 is complete.

Proof of Theorem 2. Passing to the new variables x(t) = \(\dot {q}(t)\), y(t) = q(t) + \({{B}^{{ - 1}}}A\dot {q}(t)\), we transform system (1) to

$$\begin{gathered} A\dot {x}(t) = - Bx(t) - Q(y(t) - {{B}^{{ - 1}}}Ax(t)) - \int\limits_{t - \tau }^t {D(y(\xi ) - {{B}^{{ - 1}}}Ax(\xi ))d\xi } , \\ B\dot {y}(t) = - Q(y(t) - {{B}^{{ - 1}}}Ax(t)) - \int\limits_{t - \tau }^t {D(y(\xi ) - {{B}^{{ - 1}}}Ax(\xi ))d\xi } . \\ \end{gathered} $$
(A.4)

The trivial solutions of the isolated subsystems (7), (8) are asymptotically stable. Therefore, see [32, 39], for any numbers \({{\nu }_{1}}\; \geqslant \;2\) and \({{\nu }_{2}}\; \geqslant \;2\) there exist twice continuously differentiable Lyapunov functions V1(x) and V2(y) with homogeneity orders ν1 and ν2, respectively, such that for all \(x,y \in {{\mathbb{R}}^{n}}\),

$${{m}_{{11}}}{{\left\| x \right\|}^{{{{\nu }_{1}}}}}\;\leqslant \;{{V}_{1}}(x)\;\leqslant \;{{m}_{{12}}}{{\left\| x \right\|}^{{{{\nu }_{1}}}}},\quad {{m}_{{21}}}{{\left\| y \right\|}^{{{{\nu }_{2}}}}}\;\leqslant \;{{V}_{2}}(y)\;\leqslant \;{{m}_{{22}}}{{\left\| y \right\|}^{{{{\nu }_{2}}}}},$$
$$\left\| {\frac{{\partial {{V}_{1}}(x)}}{{\partial x}}} \right\|\;\leqslant \;{{m}_{{13}}}{{\left\| x \right\|}^{{{{\nu }_{1}} - 1}}},\quad \left\| {\frac{{\partial {{V}_{2}}(y)}}{{\partial y}}} \right\|\;\leqslant \;{{m}_{{23}}}{{\left\| y \right\|}^{{{{\nu }_{2}} - 1}}},$$
$${{\left( {\frac{{\partial {{V}_{1}}(x)}}{{\partial x}}} \right)}^{ \top }}{{A}^{{ - 1}}}Bx(t)\; \geqslant \;{{m}_{{14}}}{{\left\| x \right\|}^{{{{\nu }_{1}}}}},\quad {{\left( {\frac{{\partial {{V}_{2}}(y)}}{{\partial y}}} \right)}^{ \top }}{{B}^{{ - 1}}}(Q(y) + \tau D(y))\; \geqslant \;{{m}_{{24}}}{{\left\| y \right\|}^{{{{\nu }_{1}} + \mu - 1}}}.$$

Here, mkj are positive constants, k = 1, 2,  j = 1, 2, 3, 4.

Consider the Lyapunov function

$$\tilde {V}(x,y) = {{V}_{1}}(x) + {{V}_{2}}(y).$$
(A.5)

Calculating its derivative along the trajectories of system (A.4) and using the properties of homogeneous functions, we obtain the upper bound

$$\dot {\tilde {V}}\;\leqslant \; - {\kern 1pt} {{m}_{{14}}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}}}}} + {{c}_{1}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}} - 1}}}\left( {{{{\left\| {x(t)} \right\|}}^{{{{\mu }_{1}}}}} + {{{\left\| {y(t)} \right\|}}^{{{{\mu }_{1}}}}}} \right)$$
$$ + \;{{c}_{2}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}} - 1}}}\int\limits_{t - \tau }^t {\left( {{{{\left\| {x(\xi )} \right\|}}^{\mu }} + {{{\left\| {y(\xi )} \right\|}}^{\mu }}} \right)d\xi } - {{\left( {\frac{{\partial {{V}_{2}}(y(t))}}{{\partial y}}} \right)}^{ \top }}{{B}^{{ - 1}}}\int\limits_{t - \tau }^t {D(y(\xi ))d\xi } $$
$$ - \;{{\left( {\frac{{\partial {{V}_{2}}(y(t))}}{{\partial y}}} \right)}^{ \top }}{{B}^{{ - 1}}}Q(y(t)) + {{c}_{3}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 1}}}\left\| {Q(y(t)) - Q(y(t) - {{B}^{{ - 1}}}Ax(t))} \right\|$$
$$ + \;{{c}_{4}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 1}}}\int\limits_{t - \tau }^t {\left\| {D(y(\xi )) - D(y(\xi ) - {{B}^{{ - 1}}}Ax(\xi ))} \right\|d\xi } ,$$

where c1, c2, c3, and c4 are positive constants.

Note that for any numbers ε1 > 0 and ε2 > 0, it is possible to indicate h1 > 0 and h2 > 0 such that

$$\left\| {Q(y) - Q(y - {{B}^{{ - 1}}}Ax)} \right\|\;\leqslant \;{{\varepsilon }_{1}}{{\left\| y \right\|}^{\mu }} + {{h}_{1}}{{\left\| x \right\|}^{\mu }},$$
$$\left\| {D(y) - D(y - {{B}^{{ - 1}}}Ax)} \right\|\;\leqslant \;{{\varepsilon }_{2}}{{\left\| y \right\|}^{\mu }} + {{h}_{2}}{{\left\| x \right\|}^{\mu }}$$

for all \(x,y \in {{\mathbb{R}}^{n}}\).

Now, we choose the Lyapunov–Krasovskii functional

$$\begin{gathered} V({{x}_{t}},{{y}_{t}}) = \tilde {V}(x(t),y(t)) - {{\left( {\frac{{\partial {{V}_{2}}(y(t))}}{{\partial y}}} \right)}^{ \top }}{{B}^{{ - 1}}}\int\limits_{t - \tau }^t {(\xi + \tau - t)D(y(\xi ))d\xi } \\ + \;\int\limits_{t - \tau }^t {({{\alpha }_{1}} + {{\beta }_{1}}(\xi + \tau - t)){{{\left\| {x(\xi )} \right\|}}^{{{{\nu }_{1}}}}}d\xi } + \int\limits_{t - \tau }^t {({{\alpha }_{2}} + {{\beta }_{2}}(\xi + \tau - t)){{{\left\| {y(\xi )} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}}d\xi {\kern 1pt} } , \\ \end{gathered} $$

where \(\tilde {V}(x,y)\) is the Lyapunov function given by (A.5) and α1, β1, α2, and β2 are positive parameters. As a result, we have

$${{c}_{5}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}}}}} + {{c}_{6}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}}}}} - {{c}_{7}}\tau {{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 1}}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{\mu }}d\xi } $$
$$ + \;{{\alpha }_{1}}\int\limits_{t - \tau }^t {{{{\left\| {x(\xi )} \right\|}}^{{{{\nu }_{1}}}}}d\xi } + {{\alpha }_{2}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}}d\xi } \;\leqslant \;V({{x}_{t}},{{y}_{t}})$$
$$\leqslant \;{{c}_{8}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}}}}} + {{c}_{9}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}}}}} + {{c}_{7}}\tau {{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 1}}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{\mu }}d\xi } $$
$$ + \;({{\alpha }_{1}} + {{\beta }_{1}}\tau )\int\limits_{t - \tau }^t {{{{\left\| {x(\xi )} \right\|}}^{{{{\nu }_{1}}}}}d\xi } + ({{\alpha }_{2}} + {{\beta }_{2}}\tau )\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}}d\xi } ,$$
$$\begin{gathered} \dot {V}\;\leqslant \; - {\kern 1pt} {{m}_{{14}}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}}}}} - {{m}_{{24}}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} + \mu - 1}}} + {{c}_{1}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}} - 1}}}({{\left\| {x(t)} \right\|}^{\mu }} + {{\left\| {y(t)} \right\|}^{\mu }}) \\ + \;{{c}_{2}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}} - 1}}}\int\limits_{t - \tau }^t {({{{\left\| {x(\xi )} \right\|}}^{\mu }} + {{{\left\| {y(\xi )} \right\|}}^{\mu }})d\xi } + {{c}_{3}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 1}}}({{\varepsilon }_{1}}{{\left\| {y(t)} \right\|}^{\mu }} + {{h}_{1}}{{\left\| {x(t)} \right\|}^{\mu }}) \\ \end{gathered} $$
$$\begin{gathered} + \;\tau {{c}_{{10}}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 2}}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{\mu }}d\xi \left( {{{{\left\| {x(t)} \right\|}}^{\mu }} + {{{\left\| {y(t)} \right\|}}^{\mu }} + \int\limits_{t - \tau }^t {({{{\left\| {x(\xi )} \right\|}}^{\mu }} + {{{\left\| {y(\xi )} \right\|}}^{\mu }})d\xi } } \right)} \\ + \;{{\varepsilon }_{2}}{{c}_{4}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 1}}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{\mu }}d\xi } + {{h}_{2}}{{c}_{4}}{{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} - 1}}}\int\limits_{t - \tau }^t {{{{\left\| {x(\xi )} \right\|}}^{\mu }}d\xi } \\ \end{gathered} $$
$$\begin{gathered} - \;{{\beta }_{1}}\int\limits_{t - \tau }^t {{{{\left\| {x(\xi )} \right\|}}^{{{{\nu }_{1}}}}}d\xi } - {{\beta }_{2}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}}d\xi } + ({{\alpha }_{1}} + {{\beta }_{1}}\tau ){{\left\| {x(t)} \right\|}^{{{{\nu }_{1}}}}} \\ - \;{{\alpha }_{1}}{{\left\| {x(t - \tau )} \right\|}^{{{{\nu }_{1}}}}} + ({{\alpha }_{2}} + {{\beta }_{2}}\tau ){{\left\| {y(t)} \right\|}^{{{{\nu }_{2}} + \mu - 1}}} - {{\alpha }_{2}}{{\left\| {y(t - \tau )} \right\|}^{{{{\nu }_{2}} + \mu - 1}}}. \\ \end{gathered} $$

Here, ck > 0, k = 5, …, 10.

By Young’s inequality [7], if the homogeneity orders of the functions V1(x) and V2(y) satisfy the condition 1 < (ν2 + μ – 1)/ν1 < μ and the values ε1, ε2, α1, β1, α2, β2, and δ are sufficiently small, we arrive at the relations

$$\begin{gathered} \frac{1}{2}\left( {{{c}_{6}}{{{\left\| {y(t)} \right\|}}^{{{{\nu }_{2}}}}} + {{\alpha }_{2}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}}d\xi } } \right) + {{c}_{5}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}}}}} + {{\alpha }_{1}}\int\limits_{t - \tau }^t {{{{\left\| {x(\xi )} \right\|}}^{{{{\nu }_{1}}}}}d\xi } \;\leqslant \;V({{x}_{t}},{{y}_{t}}) \\ \leqslant \;{{c}_{8}}{{\left\| {x(t)} \right\|}^{{{{\nu }_{1}}}}} + ({{\alpha }_{1}} + {{\beta }_{1}}\tau )\int\limits_{t - \tau }^t {{{{\left\| {x(\xi )} \right\|}}^{{{{\nu }_{1}}}}}d\xi } + 2\left( {{{c}_{9}}{{{\left\| {y(t)} \right\|}}^{{{{\nu }_{2}}}}} + ({{\alpha }_{2}} + {{\beta }_{2}}\tau )\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}}d\xi } } \right), \\ \end{gathered} $$
$$\dot {V}\;\leqslant \; - {\kern 1pt} \frac{1}{2}\left( {{{m}_{{14}}}{{{\left\| {x(t)} \right\|}}^{{{{\nu }_{1}}}}} + {{m}_{{24}}}{{{\left\| {y(t)} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}} + {{\beta }_{1}}\int\limits_{t - \tau }^t {{{{\left\| {x(\xi )} \right\|}}^{{{{\nu }_{1}}}}}d\xi } + {{\beta }_{2}}\int\limits_{t - \tau }^t {{{{\left\| {y(\xi )} \right\|}}^{{{{\nu }_{2}} + \mu - 1}}}d\xi } } \right),$$

holding for \({{\left\| {{{x}_{t}}} \right\|}_{\tau }} + {{\left\| {{{y}_{t}}} \right\|}_{\tau }} < \delta \).

The proof of Theorem 2 is complete.

Proof of Theorem 3. We choose the Lyapunov–Krasovskii functional

$$\begin{gathered} V({{s}_{t}},{{\omega }_{t}}) = \frac{1}{2}\lambda {{\omega }^{ \top }}(t)\Theta \omega (t) + \frac{1}{2}{{\left\| {s(t) - r} \right\|}^{2}} + {{(s(t) \times r)}^{ \top }}{{F}^{{ - 1}}}\Theta \omega (t) + b{{(s(t) \times r)}^{ \top }}{{F}^{{ - 1}}} \\ \times \;\int\limits_{t - \tau }^t {(\xi + \tau - t){{{\left\| {s(\xi ) - r} \right\|}}^{{\mu - 1}}}s(\xi ) \times rd\xi } + \int\limits_{t - \tau }^t {(\alpha + \beta (\xi + \tau - t)){{{\left\| {s(\xi ) - r} \right\|}}^{{\mu + 1}}}d\xi } , \\ \end{gathered} $$

where λ, α, and β are positive parameters.

This functional and its derivative along the trajectories of system (10), (12) admit the upper bounds

$${{c}_{1}}\lambda {{\left\| {\omega (t)} \right\|}^{2}} + \frac{1}{2}{{\left\| {s(t) - r} \right\|}^{2}} - {{c}_{2}}\left\| {s(t) - r} \right\|\left\| {\omega (t)} \right\| - {{c}_{3}}\left| b \right|\tau \left\| {s(t) - r} \right\|\int\limits_{t - \tau }^t {{{{\left\| {s(\xi ) - r} \right\|}}^{\mu }}d\xi } $$
$$ + \;\alpha \int\limits_{t - \tau }^t {{{{\left\| {s(\xi ) - r} \right\|}}^{{\mu + 1}}}d\xi } \;\leqslant \;V({{s}_{t}},{{\omega }_{t}})\;\leqslant \;{{c}_{4}}\lambda {{\left\| {\omega (t)} \right\|}^{2}} + \frac{1}{2}{{\left\| {s(t) - r} \right\|}^{2}} + {{c}_{2}}\left\| {s(t) - r} \right\|\left\| {\omega (t)} \right\|$$
$$ + \;{{c}_{3}}\left| b \right|\tau \left\| {s(t) - r} \right\|\int\limits_{t - \tau }^t {{{{\left\| {s(\xi ) - r} \right\|}}^{\mu }}d\xi } + (\alpha + \beta \tau )\int\limits_{t - \tau }^t {{{{\left\| {s(\xi ) - r} \right\|}}^{{\mu + 1}}}d\xi } ,$$
$$\dot {V}\;\leqslant \; - {\kern 1pt} (\lambda {{c}_{5}} - {{c}_{6}}){{\left\| {\omega (t)} \right\|}^{2}} + \lambda a\left\| {\omega (t)} \right\|{{\left\| {s(t) - r} \right\|}^{\mu }} + b(\lambda + {{c}_{7}}\tau )\left\| {\omega (t)} \right\|\int\limits_{t - \tau }^t {{{{\left\| {s(\xi ) - r} \right\|}}^{\mu }}d\xi } $$
$$ + \;{{c}_{8}}{{\left\| {\omega (t)} \right\|}^{2}}\left\| {s(t) - r} \right\| - (a - \tau b){{c}_{9}}{{\left\| {s(t) - r} \right\|}^{{\mu - 1}}}{{\left\| {s(t) \times r} \right\|}^{2}}$$
$$ - \;\beta \int\limits_{t - \tau }^t {{{{\left\| {s(\xi ) - r} \right\|}}^{{\mu + 1}}}d\xi } + (\alpha + \beta \tau ){{\left\| {s(t) - r} \right\|}^{{\mu + 1}}} - \alpha {{\left\| {s(t - \tau ) - r} \right\|}^{{\mu + 1}}}.$$

Here, ck > 0, k = 1, …, 9.

By Young’s inequality, if the number λ > 0 is sufficiently large and the positive numbers α, β, and δ are sufficiently small, then

$$\begin{gathered} \frac{1}{2}\left( {{{c}_{1}}\lambda {{{\left\| {\omega (t)} \right\|}}^{2}} + \frac{1}{2}{{{\left\| {s(t) - r} \right\|}}^{2}} + \alpha \int\limits_{t - \tau }^t {{{{\left\| {s(\bar {\xi }) - r} \right\|}}^{{\mu + 1}}}d\xi } } \right)\;\leqslant \;V({{s}_{t}},{{\omega }_{t}}) \\ \leqslant \;2\left( {{{c}_{4}}\lambda {{{\left\| {\omega (t)} \right\|}}^{2}} + \frac{1}{2}{{{\left\| {s(t) - r} \right\|}}^{2}} + (\alpha + \beta \tau )\int\limits_{t - \tau }^t {{{{\left\| {s(\bar {\xi }) - r} \right\|}}^{{\mu + 1}}}d\xi } } \right), \\ \end{gathered} $$
$$\dot {V}\;\leqslant \; - {\kern 1pt} {\kern 1pt} \frac{1}{2}\left( {\lambda {{c}_{5}}{{{\left\| {\omega (t)} \right\|}}^{2}} + (a - \tau b){{c}_{9}}{{{\left\| {s(t) - r} \right\|}}^{{\mu + 1}}} + \beta \int\limits_{t - \tau }^t {{{{\left\| {s(\bar {\xi }) - r} \right\|}}^{{\mu + 1}}}d\xi } } \right)$$

under \({{\left\| {{{s}_{t}} - r} \right\|}_{\tau }} + \left\| {\omega (t)} \right\| < \delta \).

Hence, according to [6, p. 22], the equilibrium (11) is asymptotically stable.

The proof of Theorem 3 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.Y., Tikhonov, A.A. Stability Analysis of Mechanical Systems with Highly Nonlinear Positional Forces under Distributed Delay. Autom Remote Control 84, 1–13 (2023). https://doi.org/10.1134/S0005117923010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923010022

Keywords:

Navigation