Skip to main content
Log in

Exponentially Stable Adaptive Control. Part I. Time-Invariant Plants

  • ROBUST, ADAPTIVE AND NETWORK CONTROL
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a new controller parameter adaptive law that guarantees the exponential stability of the classical dynamic model of the tracking error without using its coordinates in the adaptive law and relaxes some classical assumptions and requirements of adaptive control theory (the need to know the sign/value of the control input gain, the need for an experimental choice of the adaptive law gain, and the requirement to the tracking error transfer function to be strictly positive real considering the output feedback control). The applicability of the proposed law to adaptive state and output feedback control problems is shown. The advantages of developed approach over the existing ones are demonstrated mathematically and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Ioannou, P. and Sun, J., Robust Adaptive Control, New York: Dover, 2013.

    MATH  Google Scholar 

  2. Narendra, K.S. and Annaswamy, A.M., Stable Adaptive Systems, Courier Corp., 2012.

  3. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamical Systems), St. Petersburg: Nauka, 2000.

    MATH  Google Scholar 

  4. Duarte, M.A. and Narendra, K.S., Combined direct and indirect approach to adaptive control, IEEE Trans. Autom. Control, 1989, vol. 34, no. 10, pp. 1071–1075.

    Article  MathSciNet  Google Scholar 

  5. Lavretsky, E., Combined/composite model reference adaptive control, IEEE Trans. Autom. Control, 2009, vol. 54, no. 11, pp. 2692–2697.

    Article  MathSciNet  Google Scholar 

  6. Lavretsky, E., Reference dynamics modification in adaptive controllers for improved transient performance, AIAA Guid. Navig. Control Conf, 2011, pp. 1–13.

  7. Yucelen, T., De La Torre, G., and Johnson, E.N., Improving transient performance of adaptive control architectures using frequency-limited system error dynamics, Int. J. Control, 2014, vol. 87, no. 11, pp. 2383–2397.

    MATH  Google Scholar 

  8. Chowdhary, G., Muhlegg, M., and Johnson, E., Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation, Int. J. Control, 2014, vol. 87, no. 8, pp. 1583–1603.

    Article  MathSciNet  Google Scholar 

  9. Roy, S.B., Bhasin, S., and Kar, I.N., A UGES switched MRAC architecture using initial excitation, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 7044–7051.

    Article  Google Scholar 

  10. Pan, Y., Bobtsov, A., Darouach, M., and Joo, Y.-H., Efficient learning from adaptive control under sufficient excitation, Int. J. Robust Nonlinear Control, 2019, vol. 29, no. 10, pp. 3111–3124.

    Article  MathSciNet  Google Scholar 

  11. Gerasimov, D.N., Nikiforov, V.O., and Belyaev, M.E., Performance improvement of MRAC by dynamic regressor extension, IEEE Conf. Decision Control, 2018, pp. 3032–3037.

  12. Gerasimov, D.N., Belyaev, M.E., and Nikiforov, V.O., Improvement of transient performance in MRAC by memory regressor extension, Eur. J. Control, 2021, vol. 59, pp. 264–273.

    Article  MathSciNet  Google Scholar 

  13. Nikiforov, V.O. and Fradkov, A.L., Adaptive-control systems with augmented errors, Autom. Remote Control, 1994, vol. 55, no. 9, pp. 1239–1255.

    MATH  Google Scholar 

  14. Bobtsov, A.A. and Nikiforov, V.O., Adaptive output control: issues, applications and solutions, Nauchn.-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt., 2013, vol. 83, no. 1, pp. 1–14.

    Google Scholar 

  15. Monopoli, R.V., Model reference adaptive control with an augmented signal, IEEE Trans. Autom. Control, 1974, vol. 19, no. 5, pp. 474–484.

    Article  Google Scholar 

  16. Morse, A.S., High-order parameter tuners for adaptive control on nonlinear systems, Systems, Models and Feedback: Theory and Applications, Isidori, A. and Tarn, T.I., Eds., New York: Birkhäuser, 1992, pp. 339–364.

  17. Andrievskii, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of the Theory of Automatic Control with Examples in the Matlab Language), St. Petersburg: Nauka, 1999.

    MATH  Google Scholar 

  18. Krstic, M., Kanellakopoulos, I., and Kokotovich, P.V., Adaptive nonlinear control without overparametrization, Syst. Control Lett., 1992, vol. 19, pp. 177–185.

    Article  MathSciNet  Google Scholar 

  19. Erzberger, H., Analysis and design of model following control systems by state space techniques, Proc. Joint Autom. Control Conf., 1967, pp. 572–581.

  20. Glushchenko, A., Petrov, V., and Lastochkin, K., I-DREM MRAC with time-varying adaptation rate and no a priori knowledge of control input matrix sign to relax PE condition, Eur. Control Conf., 2021, pp. 2175–180.

  21. Aranovskiy, S., Bobtsov, A., Ortega, R., and Pyrkin, A., Performance enhancement of parameter estimators via dynamic regressor extension and mixing, IEEE Trans. Autom. Control, 2016, vol. 62, no. 7, pp. 3546–3550.

    Article  MathSciNet  Google Scholar 

  22. Yi, B. and Ortega, R., Conditions for convergence of dynamic regressor extension and mixing parameter estimator using LTI filters, 2020, pp. 1–6. .

  23. Glushchenko, A., Petrov, V., and Lastochkin, K., Regression filtration with resetting to provide exponential convergence of MRAC for plants with jump change of unknown parameters, 2021, pp. 1–12. .

  24. Glushchenko, A.I., Petrov, V.A., and Lastochkin, K.A., I-DREM: relaxing the square integrability condition, Autom. Remote Control, 2021, vol. 82, no. 7, pp. 1233–1247.

    Article  Google Scholar 

  25. Feuer, A. and Morse, A.S., Adaptive control of single-input, single-output linear systems, IEEE Trans. Autom. Control, 1978, vol. 23, no. 4, pp. 557–569.

    Article  MathSciNet  Google Scholar 

  26. Narendra, K.S. and Valavani, L.S., Stable adaptive controller design-direct control, IEEE Trans. Autom. Control, 1978, vol. 23, no. 4, pp. 570–583.

    Article  Google Scholar 

  27. Kreisselmeier, G., Adaptive observers with exponential rate of convergence, IEEE Trans. Autom. Control, 1977, vol. 22, no. 1, pp. 2–8.

    Article  MathSciNet  Google Scholar 

  28. Korotina, M., Aranovskiy, S., Ushirobira, R., and Vedyakov, A., On parameter tuning and convergence properties of the DREM procedure, Eur. Control Conf., 2020, pp. 53–58.

  29. Gerasimov, D.N., Ortega, R., and Nikiforov, V.O., Relaxing the high-frequency gain sign assumption in direct model reference adaptive control, Eur. J. Control, 2018, vol. 43, pp. 12–19.

    Article  MathSciNet  Google Scholar 

  30. Glushchenko, A., Petrov, V., and Lastochkin, K., Robust method to provide exponential convergence of model parameters solving linear time-invariant plant identification problem, Int. J. Adaptive Control Signal Proc., 2021, vol. 35, no. 6, pp. 1120–1137.

    Article  MathSciNet  Google Scholar 

  31. Glushchenko, A.I., Petrov, V.A., and Lastochkin, K.A., Normalization of regressor excitation in the dynamic extension and mixing procedure, Autom. Remote Control, 2022, vol. 83, no. 1, pp. 17–31.

    Article  Google Scholar 

  32. Glushchenko, A.I., Petrov, V.A., and Lastochkin, K.A., Problem of applying DREM procedure in the problem of identifying interval parameters, Nauchn.-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt., 2021, vol. 21, no. 4, pp. 449–456.

    Article  Google Scholar 

  33. Glushchenko, A., Petrov, V., and Lastochkin, K., Exponential convergence of piecewise-constant parameters identification under finite excitation condition, 2021, pp. 1–10. .

Download references

Funding

This research was financially supported in part by Grants Council of the President of the Russian Federation, project no. MD-1787.2022.4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Glushchenko, K. A. Lastochkin or V. A. Petrov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushchenko, A.I., Lastochkin, K.A. & Petrov, V.A. Exponentially Stable Adaptive Control. Part I. Time-Invariant Plants. Autom Remote Control 83, 548–578 (2022). https://doi.org/10.1134/S000511792204004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511792204004X

Keywords

Navigation