Skip to main content
Log in

Optimization of Source Locations and Parameters for Network Structure Objects

  • ROBUST, ADAPTIVE AND NETWORK CONTROL
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We study the problem of optimization of the locations and parameter values of lumped sources that affect the operation of a complex object. The object consists of many one-dimensional objects, the state of each of which is described by a system of ordinary differential equations with nonseparated boundary conditions. The necessary optimality conditions for the source parameters and for the source concentration places obtained. A model problem is used as an example for which the results of numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lions, J.L., Contrôle des systèmes distribués singuliers, Paris: Gauthier-Villars, 1987.

    MATH  Google Scholar 

  2. Miller, B.M. and Rubinovich, E.Ya., Impulsive control with impulsive actions of two types, Autom. Remote Control, 2009, vol. 70, no. 11, pp. 1795–1813.

    Article  MathSciNet  Google Scholar 

  3. Miller, B.M. and Rubinovich, E.Ya., Optimizatsiya dinamicheskikh sistem s impul’snym upravleniem (Optimization of Dynamic Systems with Impulsive Control), Moscow: Nauka, 2005.

    Google Scholar 

  4. Aida-zade, K.R. and Ashrafova, Ye.R., Optimal control of sources on some classes of functions, Optim. J. Math. Program. Oper. Res., 2014, vol. 63, no. 7, pp. 1135–1152.

    MathSciNet  MATH  Google Scholar 

  5. Aida-zade, K.R., Investigation of non-linear optimization problems of networks structure, Autom. Remote Control, 1990, vol. 51, no. 2, pp. 135–145.

    MathSciNet  MATH  Google Scholar 

  6. Aida-zade, K.R., Ali-zade, R.I., Novruzbekov, I.G., and Kalaushin, M.A., Decomposition method for analysis and synthesis of planar mechanisms, Mekh. Mashin, 1980, no. 57, pp. 26–30.

  7. Tsurkov, V.I., Dekompozitsiya v zadachakh bol’shoi razmernosti (Decomposition in Problems of Large Dimension), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  8. Geiser, J., Decomposition Methods for Differential Equations: Theory and Applications, CRC Press, 2009.

  9. Chernous’ko, F.L., Optimal movement of a multiple-link system in a medium with resistance, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2011, vol. 17, no. 2, pp. 240–255.

    Google Scholar 

  10. Vasil’ev, F.P., Metody optimizatsii (Optimization Methods), Moscow: Faktorial Press, 2002.

    Google Scholar 

  11. Polyak, B.T., Vvedenie v optimizatsiyu (Introduction to Optimization), Moscow: Nauka, 2019.

    MATH  Google Scholar 

  12. Aida-zade, K.R. and Ashrafova, Ye.R., Solving systems of differential equations of block structure with nonseparated boundary conditions, J. Appl. Ind. Math., 2015, vol. 9, no. 1, pp. 1–10.

    Article  MathSciNet  Google Scholar 

  13. Aida-zade, K.R. and Ashrafova, Ye.R., Calculation of the state of a system of discrete linear processes connected by nonseparated boundary conditions, J. Appl. Ind. Math., 2016, vol. 10, no. 4, pp. 1–13.

    Article  MathSciNet  Google Scholar 

  14. Ashrafova, Y.R., On one method of block transfer of conditions for a system of three-step discrete processes connected only by boundary conditions, Inf. Control Probl., 2019, vol. 39, no. 2, pp. 48–56.

    Google Scholar 

  15. Abramov, A.A., On the transfer of boundary conditions for systems of linear ordinary differential equations (a version of the sweep method), Zh. Vychisl. Mat. Mat. Fiz., 1961, vol. 1, no. 3, pp. 542–545.

    Google Scholar 

  16. Aida-zade, K.R. and Abdullaev, V.M., On the solution of boundary value problems with nonseparated multipoint and integral conditions, Differ. Equations, 2013, vol. 49, no. 9, pp. 1114–1125.

    Article  MathSciNet  Google Scholar 

  17. Voevodin, A.F. and Shugrin, S.M., Metody resheniya odnomernykh evolyutsionnykh sistem (Methods for Solving One-Dimensional Evolution Systems), Novosibirsk: VO Nauka, 1993.

    Google Scholar 

  18. Samarskii, A.A. and Nikolaev, E.S., Metody resheniya setochnykh uravnenii (Methods for Solving Grid Equations), Moscow: Nauka, 1978.

    Google Scholar 

  19. Abramov, A.A., Burago, N.G., et al., A package of applied programs for solving linear two-point boundary value problems, in Soobshcheniya po programmnomu obespecheniyu EVM (Computer Software Communications), Moscow: Vychisl. Tsentr Akad. Nauk SSSR, 1982.

    Google Scholar 

  20. Bykov, A.N., Erofeev, A.M., Sizov, E.A., and Fedorov, A.A., The sweep parallelization method on hybrid computers, Vychisl. Metody Programm., 2013, no. 14, pp. 43–47.

  21. Aida-zade, K.R. and Bagirov, A.G., On the problem of spacing of oil wells and control of their production rates, Autom. Remote Control, 2006, vol. 67, no. 1, pp. 44–53.

    Article  MathSciNet  Google Scholar 

  22. Aida-zade, K.R. and Ashrafova, E.R., Numerical leak detection in a pipeline network of complex structure with unsteady flow, Comput. Math. Math. Phys., 2017, vol. 57, no. 12, pp. 1919–1934.

    Article  MathSciNet  Google Scholar 

  23. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972.

    Google Scholar 

  24. Tikhonov, A.N., Vasil’eva, A.B., and Sveshnikov, A.G., Differentsial’nye uravneniya (Differential Equations), Moscow: Fizmatlit, 2005.

    MATH  Google Scholar 

  25. Vasil’eva, O.O. and Mizukami, K., Dynamic processes described by a boundary value problem: necessary condition for optimality and solution methods, Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2000, no. 1, pp. 95–100.

  26. Ashchepkov, L.T., Optimal control of system with intermediate conditions, Prikl. Mat. Mekh., 1981, vol. 45, no. 2, pp. 215–222.

    MathSciNet  MATH  Google Scholar 

  27. Vasilieva, O.O. and Mizukami, K., Optimality criterion for singular controllers: linear boundary conditions, J. Math Anal. Appl., 1997, vol. 213, no. 2, pp. 620–641.

    Article  MathSciNet  Google Scholar 

  28. Sharifov, Y.A. and Mamedova, N.B., Optimal control problem described by impulsive differential equations with nonlocal boundary conditions, Differ. Equations, 2014, vol. 50, no. 3, pp. 401–409.

    Article  MathSciNet  Google Scholar 

  29. Abdullayev, V.M., Numerical solution to optimal control problems with multipoint and integral conditions, Proc. Inst. Math. Mech., 2018, vol. 44, no. 2, pp. 171–186.

    MathSciNet  MATH  Google Scholar 

  30. Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1983.

    Google Scholar 

  31. Butkovskii, A.G. and Pustyl’nikov, L.M., Teoriya podvizhnogo upravleniya sistemami s raspredelennymi parametrami (Theory of Mobile Control of Systems with Distributed Parameters), Moscow: Nauka, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. R. Aida-zade or Ye. R. Ashrafova.

Additional information

Translated by V. Potapchouck

APPENDIX

Proof of Theorem 1. Let \(w_{1}^{ki} \), \( \mathrm {v}_{1}^{i} \) and \(w_{2}^{ki} \), \(\mathrm {v}_{2}^{i} \) be arbitrary admissible parameters in \(W^{ki} \times V^{i} \), and let \(u_{1}^{ki} (x) \) and \(u_{2}^{ki} (x) \) be the corresponding solutions of the boundary value problems (2.1), (2.2); that is,

$$ \begin {gathered} \frac {du_{1}^{ki} (x)}{dx} =A^{ki} (x)u_{1}^{ki} (x)+B^{ki} w_{1}^{ki} \delta (x-\xi ^{ki} )+f^{ki} (x),\\ x\in (0,l^{ki} ),\quad k\in I_{i}^{+} ,\quad i\in I, \end {gathered} $$
(A.1)
$$ \sum _{s=1,\thinspace k_{s} \in I_{i}^{-} }^{\underline {n}_{i} }g_{j}^{ik_{s} } u_{1}^{ik_{s} } (0)+\sum _{s=1,\thinspace k_{s} \in I_{i}^{+} }^{\overline {n}_{i} }q_{j}^{k_{s} i} u_{1}^{k_{s} i} (l^{k_{s} i} ) =\mathrm {v}_{1j}^{i} ,\quad j={1,\ldots ,M_{i}},\quad i\in I, $$
(A.2)
$$ \begin {gathered} \frac {du_{2}^{ki} (x)}{dx} =A^{ki} (x)u_{2}^{ki} (x)+B^{ki} w_{2}^{ki} \delta (x-\xi ^{ki} )+f^{ki} (x),\\ x\in (0,l^{ki} ),\quad k\in I_{i}^{+} ,\quad i\in I, \end {gathered} $$
(A.3)
$$ \begin {gathered} \sum _{s=1,\thinspace k_{s} \in I_{i}^{-} }^{\underline {n}_{i} }g_{j}^{ik_{s} } u_{2}^{ik_{s} } (0)+\sum _{s=1,\thinspace k_{s} \in I_{i}^{+} }^{\overline {n}_{i} }q_{j}^{k_{s} i} u_{2}^{k_{s} i} (l^{k_{s} i} ) =\mathrm {v}_{2j}^{i} ,\\ j={1,\ldots ,M_{i}},\quad i\in I.\end {gathered}$$
(A.4)
By virtue of the convexity of the admissible set \(\Omega _{{\rm v}^{i} } \), we have \({w_{1}^{ki} =\lambda w_{1}^{ki} +(1-\lambda )w_{1}^{ki} \in \Omega _{w^{ki} }} \) for an arbitrary \(\lambda \in [0;1] \). Set \(u^{ki} (t)=\lambda u_{1}^{ki} (x)+(1-\lambda )u_{2}^{ki} (x)\).

Let us multiply both sides of (A.1) by \(\lambda \) and of (A.3) by \((1-\lambda ) \), add the resulting equalities term by term, and arrange the terms,

$$ \begin {aligned} \lambda \frac {du_{1}^{ki} (x)}{dx} +(1-\lambda )\frac {du_{2}^{ki} (x)}{dx} &=A^{ki} (x)\left [\lambda u_{1}^{ki} (x)+(1-\lambda )u_{2}^{ki} (x)\right ] \\ &\qquad \qquad {}+B^{ki} \left [\lambda w_{1}^{ki} + (1-\lambda )w_{2}^{ki} \right ]\delta (x-\xi ^{ki} )\\ &\qquad \qquad \qquad \qquad {}+\left [\lambda f^{ki} (x)+(1-\lambda )f^{ki} (x)\right ],\quad x\in (0,l^{ki} ). \end {aligned}$$
It follows that the pair \(\left (u^{ki} (x),w^{ki} \right )\) satisfies the system of differential equations
$$ \begin {gathered} \frac {du^{ki} (x)}{dx} =A^{ki} (x)u^{ki} (x)+B^{ki} w^{ki} \delta (x-\xi ^{ki} )+f^{ki} (x),\\ x\in (0,l^{ki} ), \quad k\in I_{i}^{+} ,\quad i\in I. \end {gathered}$$
Multiplying both sides of (A.2) by \(\lambda \) and of (A.4) by \((1-\lambda )\) and performing summation and grouping, we obtain
$$ \begin {gathered} \sum _{s=1,\thinspace k_{s} \in I_{i}^{-} }^{\underline {n}_{i} }g_{j}^{ik_{s} } \left [\lambda u_{1}^{ik_{s} } (0)+(1-\lambda )u_{2}^{ik_{s} } (0)\right ]+\sum _{s=1,\thinspace k_{s} \in I_{i}^{+} }^{\overline {n}_{i} }q_{j}^{k_{s} i} \left [\lambda u_{1}^{k_{s} i} (l^{k_{s} i} )+(1-\lambda )u_{2}^{k_{s} i} (l^{k_{s} i} )\right ] \\ {}=\lambda \mathrm {v}_{1j}^{i} +(1-\lambda )\mathrm {v}_{2j}^{i} , \quad j={1,\ldots ,M_{i}}, \quad i\in I. \end {gathered}$$
It follows that the pair \( \left (u^{ki} (x),\mathrm {v}^{i} \right )\) satisfies the conditions
$$ \sum _{s=1,k_{s} \in I_{i}^{-} }^{\underline {n}_{i} }g_{j}^{ik_{s} } u^{ik_{s} } (0)+\sum _{s=1,k_{s} \in I_{i}^{+} }^{\overline {n}_{i} }q_{j}^{k_{s} i} u^{k_{s} i} (l^{k_{s} i} ) =\mathrm {v}_{j}^{i} , \quad j={1,\ldots ,M_{i}}, \quad i\in I. $$

By virtue of the convexity of the functions \(f_{0}^{ki} (u^{ki} ,x) \) and \(\Phi (\underline {u},\overline {u},w,\mathrm {v},\xi )\) with respect to the arguments \(u \), \(w \), and \(\mathrm {v} \), we have

$$ \begin {aligned} \mathfrak {I}\thinspace (w,{\rm v}, \xi )&=\mathfrak {I}\thinspace \big (\lambda w_{1} +(1-\lambda )w_{2} ,\lambda {\rm v}_{1} +(1-\lambda ){\rm v}_{2} ,\xi \big ) \\ &{}=\sum _{i\in I}\sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} }f_{0}^{ki} \big (\lambda u^{ki} (x)+(1-\lambda )u^{ki} (x),x\big )dx \\ &\qquad {}+\Phi \big (\lambda \underline {u}+(1-\lambda )\underline {u},\lambda \overline {u}+(1-\lambda )\overline {u},\lambda w+(1-\lambda )w,\lambda {\rm v}+(1-\lambda ){\rm v}, \xi \big ) \\ &{}\le \sum _{i\in I}\sum _{k\in I_{i}^{+} }\left (\lambda \int \limits _{0}^{l^{ki} }f_{0}^{ki} \big (u^{ki} (x),x\big )dx+ \right . (1-\lambda )\left . \int \limits _{0}^{l^{ki} }f_{0}^{ki} \big (u^{ki} (x),x\big )dx \right ) \\ &\qquad {}+\lambda \Phi (\underline {u},\overline {u},w,{\rm v}, \xi )+(1-\lambda )\Phi (\underline {u},\overline {u},w,{\rm v}, \xi ) \\[.3em] &{}\le \lambda \mathfrak {I}\thinspace (w,{\rm v}, \xi )+(1-\lambda )\mathfrak {I}\thinspace (w,{\rm v}, \xi ). \end {aligned}$$
(A.5)

This implies the convexity of the functional \(\mathfrak {I}\thinspace (w,{\rm v}, \xi )\) with respect to \(w \) and \(\rm v \). It is clear that if one of the functions \(f_{0}^{ki} (u^{ki} ,x)\) and \(\Phi (\underline {u},\overline {u},w,\mathrm {v},\xi )\) is strictly convex, then the inequality in (A.5) will be strict. Consequently, so will be the functional of problem (2.1), (2.2), (2.4), (2.5) with respect to \(w \) and \(\rm v \). The proof of Theorem 1 is complete. \(\quad \blacksquare \)

Proof of Theorem 2. Using the increment method for the vector to be optimized, let us prove the differentiability of the functional and determine the linear parts of its increment [10, 11].

In system (2.1), we introduce the notation \(W^{ki} =W^{ki} (x;w^{ki} ,\xi ^{ki})=w^{ki} \delta (x-\xi ^{ki} ) \), \( (k,i)\in J \), and \(W=W(x;w,\xi )=\left (W^{ki} (x,w^{ki} ,\xi ^{ki} ):\thinspace (k,i)\in J\right ) \) for the terms to be optimized and write system (2.1) as

$$ \frac {du^{ki} (x)}{dx} =A^{ki} (x)u^{ki} (x)+B^{ki} W^{ki} (x;w^{ki} ,\xi ^{ki} )+f^{ki} (x), \quad (k, i)\in J.$$

Assume that the parameter triple \(\upsilon =(w,{\rm v}, \xi ) \) to be optimized has received an increment \(\Delta \upsilon =(\Delta w,\Delta {\rm v}, \Delta \xi ) \). Set \(\tilde {\upsilon }=\upsilon +\Delta \upsilon \), \( \tilde {w}=w+\Delta w \), \( \tilde {{\rm v}}={\rm v}+\Delta {\rm v}\), and \({ \tilde {\xi }=\xi +\Delta \xi } \).

In this case, the function \(W(x;w,\xi )\) and the solution of the boundary value problem (2.1), (2.2) will receive the increments

$$ \begin {gathered} \Delta W(x;w,\xi )=W(x;w+\Delta w,\xi +\Delta \xi )-W(x;w,\xi ), \\ \Delta u^{ki} (x;\upsilon )=u^{ki} (x;\upsilon +\Delta \upsilon )-u^{ki} (x;\upsilon )=\tilde {u}^{ki} (x;\tilde {\upsilon })-u^{ki} (x;\upsilon ), \quad (k,i)\in J, \end {gathered}$$
where the \(u^{ki} (x;\upsilon ) \) and \(\tilde {u}^{ki} (x;\tilde {\upsilon })\), \((k,i)\in J \), are the solutions of the boundary value problems (2.1) and (2.2) with the parameters \(\upsilon \) and \(\tilde {\upsilon }=\upsilon +\Delta \upsilon \), respectively, to be optimized.

It can readily be shown that the \(\Delta u^{ki} (x;\upsilon ) \), \( (k,i)\in J \), are solutions of the system of boundary value problems

$$ \frac {d\Delta u^{ki} (x)}{dx} =A^{ki} (x)\Delta u^{ki} (x)+B^{ki} \Delta W^{ki} (x;w^{ki} ,\xi ^{ki} ), \quad (k, i)\in J, $$
(A.6)
$$ \sum _{s=1,\thinspace k_{s} \in I_{i}^{-} }^{\underline {n}_{i} }g_{j}^{ik_{s} } \Delta u^{ik_{s} } (0)+\sum _{s=1,\thinspace k_{s} \in I_{i}^{+} }^{\overline {n}_{i} }q_{j}^{k_{s} i} \Delta u^{k_{s} i} (l^{k_{s} i} ) =\Delta \mathrm {v}_{j}^{i} ,\\ j={1,\ldots ,M_{i}},\quad i\in I. $$
(A.7)

Then for the increment of the functional (2.5) we have

$$ \begin {aligned} \Delta \mathfrak {I}\thinspace (w,\mathrm {v},\xi )&=\mathfrak {I}\thinspace (\hat {w},\hat {\mathrm {v}},\hat {\xi })-\mathfrak {I}\thinspace (w,\mathrm {v},\xi )=\sum _{i\in I}\sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} }\frac {\partial f_{0}^{ki} }{\partial u^{ki} } \Delta u^{ki} (x) \\ &\qquad {}+\frac {\partial \Phi }{\partial \underline {u}} \Delta \underline {u}+\frac {\partial \Phi }{\partial \overline {u}} \Delta \overline {u}+\frac {\partial \Phi }{\partial w} \Delta w+\frac {\partial \Phi }{\partial {\rm v}} \Delta {\rm v+}\frac {\partial \Phi }{\partial \xi } \Delta \xi +\eta , \end {aligned}$$
(A.8)
$$ \eta =o\left (\big \| \Delta u(x)\big \| _{L_{2}^{M} [0,l]} ,\left \| \Delta \underline {u}\right \| _{{\rm R}^{\underline {n}} } ,\left \| \Delta \overline {u}\right \| _{{\rm R}^{\overline {n}} } ,\left \| \Delta w\right \| _{{\rm R}^{\mu } } ,\left \| \Delta \xi \right \| _{{\rm R}^{\overline {m}} } ,\left \| \Delta {\rm v}\right \| _{{\rm R}^{M} } \right ). $$
(A.9)
Here we have denoted \(f_{0}^{ki} =f_{0}^{ki} (u^{ki}(x),x)\) and \(\Phi =\Phi (\underline {u},\overline {u},w,\mathrm {v},\xi )\), and \(\eta \) is the residual term in appropriate spaces of functions and finite-dimensional vectors.

It is well known [24] in the theory of differential equations that under the assumptions made about the data occurring in the problem one has the estimate

$$ \big \| \Delta u(x)\big \|_{L_{2}^{M} [0,l]} \le O\left (\left \| \Delta w\right \| _{{\rm R}^{\mu } } ,\left \| \Delta \xi \right \| _{{\rm R}^{\overline {m}} } ,\left \| \Delta {\rm v}\right \| _{{\rm R}^{M} } \right ),$$
and hence the following estimates hold:
$$ \begin {gathered} {\left \| \Delta \underline {u}\right \| _{{\rm R}^{\underline {n}} } =\big \| \Delta u(0)\big \| _{{\rm R}^{\underline {n}} } \le O\big (\left \| \Delta w\right \| _{{\rm R}^{\mu } } ,\left \| \Delta \xi \right \| _{{\rm R}^{\overline {m}} } ,\left \| \Delta {\rm v}\right \| _{{\rm R}^{M} } \big ),} \\ {\left \| \Delta \overline {u}\right \| _{{\rm R}^{\overline {n}} } =\big \| \Delta u(l)\big \| _{{\rm R}^{\overline {n}} } \le O\big (\left \| \Delta w\right \| _{{\rm R}^{\mu } } ,\left \| \Delta \xi \right \| _{{\rm R}^{\overline {m}} } ,\left \| \Delta {\rm v}\right \| _{{\rm R}^{M} } \big ).} \end {gathered} $$

Then from (A.9) we have the main estimate

$$ \begin {gathered} \eta =o\big (\left \| \Delta w\right \| _{{\rm R}^{\mu } } ,\left \| \Delta \xi \right \| _{{\rm R}^{\overline {m}} } ,\left \| \Delta {\rm v}\right \| _{{\rm R}^{M}}\big ), \end {gathered}$$
which implies the differentiability of the functional \(\mathfrak {I}\thinspace (w,{\rm v}, \xi ) \) with respect to all of its arguments.

Now let us present formulas for the components of the gradient of the functional of the problem with respect to \(w\), \(\mathrm {v} \), and \(\xi \). To this end, we transfer the right-hand sides of Eqs. (A.6) to the left and multiply the relations by as yet arbitrary \(\aleph \)-dimensional vector functions \( \psi ^{ki} (x)\in \mathrm {R}^{\aleph } \), \(x\in (0,l^{ki} )\), \(k\in I_{i}^{+} \), \( i\in I \), continuously differentiable with respect to their arguments. Let us add up the resulting expressions, equate the sum with zero, and integrate by parts in the sum,

$$ \begin {aligned} 0 &= \sum _{i\in I}\sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} }\left [\big (\psi ^{ki} (x)\big )^{\mathrm {T}} \left ( \frac {d\Delta u^{ki} (x)}{dx} - A^{ki} (x)\Delta u^{ki} (x) - B^{ki} \Delta W^{ki} (x,\Delta w,\Delta \xi ) \right ) \right ]dx \\ &{}=\sum _{i\in I}\left \{\left [\sum _{k\in I_{i}^{+} }\big (\psi ^{ki} (l^{ki} )\big )^{\mathrm {T}} \Delta u^{ki} (l^{ki} ) \right . \right . \left . -\sum _{k\in I_{i}^{-} }\big (\psi ^{ik} (0)\big )^{\mathrm {T}} \Delta u^{ik} (0) \right ] \\ &\qquad \qquad \qquad \qquad \qquad {}-\left . \sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} }\left [\left (\left (\frac {d\psi ^{ki} (x)}{dx} \right )^{\mathrm {T}} +\big (\psi ^{ki} (x)\big )^{\mathrm {T}} A^{ki} (x)\right )\Delta u^{ki} (x)\right .\right . \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad {} \left .\left .\vphantom {\left [\left (\left (\frac {d\psi ^{ki} (x)}{dx} \right )^{\mathrm {T}} +(\psi ^{ki} (x))^{\mathrm{T}} A^{ki} (x)\right )\Delta u^{ki} (x)-\right .}{}-\big (\psi ^{ki} (x)\big )^{\mathrm {T}} B^{ki} \Delta W^{ki} (x,\Delta w,\Delta \xi )\right ] dx\right \}. \end {aligned} $$
(A.10)
Let us add the right-hand side of (A.10) to (A.8) and arrange terms to obtain
$$ \begin {aligned} &{}\Delta \mathfrak {I}\thinspace (w,{\rm v}, \xi ) =\sum _{i\in I}\sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} }\left \{\left [\frac {\partial f_{0}^{ki} }{\partial u^{ki} } -\left (\frac {d\psi ^{ki} (x)}{dx} \right )^{\mathrm {T}} -\big (\psi ^{ki} (x)\big )^{\mathrm {T}} A^{ki} (x)\right ] \Delta u^{ki} (x) \right . \\[.3em] &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad {}\left .\vphantom {\left \{\left [\frac {\partial f_{0}^{ki} }{\partial u^{ki} } -\left (\frac {d\psi ^{ki} (x)}{dx} \right )^{\mathrm {T}} -(\psi ^{ki} (x))^{\mathrm {T}} A^{ki} (x)\right ] \Delta u^{ki} (x) -{}\right .} {} -\big (\psi ^{ki} (x)\big )^{\mathrm {T}} B^{ki} \Delta W^{ki} (x,\Delta w,\Delta \xi )\right \}dx \\[.3em] &\qquad {}+ \left ( \frac {\partial \Phi }{\partial \underline {u}} - (\underline {\psi })^{\mathrm {T}} \right ) \Delta \underline {u} + \left ( \frac {\partial \Phi }{\partial \overline {u}} + (\overline {\psi })^{\mathrm {T}} \right ) \Delta \overline {u} + \frac {\partial \Phi }{\partial w} \Delta w + \frac {\partial \Phi }{\partial {\rm v}} \Delta {\rm v} + \frac {\partial \Phi }{\partial \xi } \Delta \xi + \eta , \end {aligned}$$
(A.11)
where
$$ \begin {gathered} \underline {\psi }=\left (\underline {\psi }^{i} :i\in I\right )\in {\rm R}^{\underline {n}},\quad \overline {\psi }=\left (\overline {\psi }^{i} :i\in I\right )\in {\rm R}^{\overline {n}},\\[.3em] \begin {aligned} \underline {\psi }^{i} &=\big (\psi ^{ik_{1} } (0),\ldots ,\psi ^{ik_{\underline {n}_{i} } } (0)\big )^{\mathrm {T}},\\ \overline {\psi }^{i} &=\big (\psi ^{k_{1} i} (l^{k_{1} i} ),\ldots ,\psi ^{k_{\overline {n}_{i} } i} (l^{k_{\overline {n}_{i} } i})\big )^{\mathrm {T}}. \end {aligned} \end {gathered}$$
Let us transform the second term in the integrand of (A.11) neglecting terms that are less than the first order of smallness,
$$ \begin {aligned} &\sum _{i\in I}\sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} }\big (\psi ^{ki} (x)\big )^{\mathrm {T}} B^{ki} \Delta W^{ki} (x,\Delta w,\Delta \xi )dx \\[.4em] &\qquad {}= \sum _{i\in I}\sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} } \big (\psi ^{ki}(x)\big )^{\mathrm {T}} B^{ki} \Big [ (w^{ki} + \Delta w^{ki} )\delta \big (x - (\xi ^{ki} + \Delta \xi ^{ki} )\big ) - w^{ki} \delta (x - \xi ^{ki} ) \Big ] dx \\[.4em] &\qquad {}=\sum _{i\in I}\sum _{k\in I_{i}^{+} }\left (\int \limits _{0}^{l^{ki} }\big (\psi ^{ki} (x)\big )^{\mathrm {T}} \delta \big (x-(\xi ^{ki} +\Delta \xi ^{ki} )\big ) dx\right ) B^{ki} (w^{ki} +\Delta w^{ki} ) \\ &\qquad \qquad {}-\sum _{i\in I}\sum _{k\in I_{i}^{+} }\left (\int \limits _{0}^{l^{ki} }\big (\psi ^{ki} (x)\big )^{\mathrm {T}} \delta (x-\xi ^{ki} )dx \right ) B^{ki} w^{ki} \\[.4em] &\qquad {}=\sum _{i\in I}\sum _{k\in I_{i}^{+} }\big (\psi ^{ki} (\xi ^{ki} +\Delta \xi ^{ki} )\big )^{\mathrm {T}} B^{ki} (w^{ki} +\Delta w^{ki} ) -\sum _{i\in I}\sum _{k\in I_{i}^{+} }\big (\psi ^{ki} (\xi ^{ki} )\big )^{\mathrm {T}} B^{ki} w^{ki} \\[.4em] &\qquad {}=\sum _{i\in I}\sum _{k\in I_{i}^{+} }\big (\psi ^{ki} (\xi ^{ki} +\Delta \xi ^{ki} )\big )^{\mathrm {T}} B^{ki} w^{ki} +\sum _{i\in I}\sum _{k\in I_{i}^{+} }\big (\psi ^{ki} (\xi ^{ki} +\Delta \xi ^{ki} )\big )^{\mathrm {T}} B^{ki} \Delta w^{ki} \\[.4em] &\qquad \qquad {}-\sum _{i\in I}\sum _{k\in I_{i}^{+} }\big (\psi ^{ki} (\xi ^{ki} )\big )^{\mathrm {T}} B^{ki} w^{ki} \\[.4em] &\qquad {}=\sum _{i\in I}\sum _{k\in I_{i}^{+} }\left (\left . \frac {d\psi ^{ki} (x)}{dx} \right |_{x=\xi ^{ki} } \right )^{\mathrm {T}} B^{ki} w^{ki} \Delta \xi ^{ki} +\sum _{i\in I}\sum _{k\in I_{i}^{+} }\big (\psi ^{ki} (\xi ^{ki} )\big )^{\mathrm {T}} B^{ki} \Delta w^{ki} . \end {aligned} $$
Substituting the resulting expression into (A.11), after rearranging the terms we obtain
$$ \begin {aligned} \Delta \mathfrak {I}\thinspace (w,{\rm v}, \xi )&=\sum _{i\in I}\sum _{k\in I_{i}^{+} }\int \limits _{0}^{l^{ki} }\left [\frac {\partial f_{0}^{ki} }{\partial u^{ki} } -\left (\frac {d\psi ^{ki} (x)}{dx} \right )^{\mathrm {T}} -\big (\psi ^{ki} (x)\big )^{\mathrm {T}} A^{ki} (x)\right ]\Delta u^{ki} (x)dx \\ &\quad {}-\sum _{i\in I}\sum _{k\in I_{i}^{+} }\left [\left (\left . \frac {d\psi ^{ki} (x)}{dx} \right |_{x=\xi ^{ki} } \right )^{\mathrm {T}} B^{ki} w^{ki} -\frac {\partial \Phi }{\partial \xi ^{ki} } \right ] \Delta \xi ^{ki} \\ &\quad {}-\sum _{i\in I}\sum _{k\in I_{i}^{+} }\left [\left (\psi ^{ki} (\xi ^{ki} )\right )^{\mathrm {T}} B^{ki} -\frac {\partial \Phi }{\partial w^{ki} } \right ] \Delta w^{ki} +\sum _{i\in I}\frac {\partial \Phi }{\partial {\rm v}^{i} } \Delta {\rm v}^{i} \\ &\quad {}+\left [\left (\frac {\partial \Phi }{\partial \underline {u}} -(\underline {\psi })^{\mathrm {T}} \right )\Delta \underline {u}+\left (\frac {\partial \Phi }{\partial \overline {u}} +(\overline {\psi })^{\mathrm {T}} \right )\Delta \overline {u}\right ]+\eta . \end {aligned}$$
(A.12)

Let us deal with the expression in the last brackets.

To simplify the presentation of the calculations to follow, instead of matrix and vector operations we also use their componentwise notation. We write conditions (A.7) in the form

$$ \begin {aligned} &\left (\begin {array}{rcl} g_{1{}1}^{ik_{1} } \ldots g_{1\aleph }^{ik_{1} }& \ldots & g_{1\underline {n}_{i} }^{ik_{\underline {n}_{i} } } \ldots g_{1\underline {n}_{i} \cdot \aleph }^{ik_{\underline {n}_{i} } } \\ \ldots & \ldots & \ldots \\ g_{M_{i} ,1}^{ik_{1} } \ldots g_{M_{i} ,\aleph }^{ik_{1} } & \ldots & g_{M_{i} ,\underline {n}_{i} }^{ik_{\underline {n}_{i} } } \ldots g_{M_{i} \underline {,n}_{i} \cdot \aleph }^{ik_{\underline {n}_{i} } } \end {array}\right )\left (\begin {array}{c} {\Delta \underline {u}_{1}^{i} } \\ {\ldots } \\ {\Delta \underline {u}_{\underline {n}_{i} \cdot \aleph }^{i} } \end {array}\right ) \\[.3em] &\qquad \qquad {}+\left (\begin {array}{rcl} q_{1{}1}^{ik_{1} } \ldots q_{1\aleph }^{ik_{1} }& \ldots & q_{1\overline {n}_{i} }^{ik_{\overline {n}_{i} } } \ldots q_{1\overline {n}_{i} \cdot \aleph }^{ik_{\overline {n}_{i} } } \\ \ldots & \ldots & \ldots \\ q_{M_{i} ,1}^{ik_{1} } \ldots q_{M_{i} ,\aleph }^{ik_{1} }& \ldots & q_{M_{i} ,\overline {n}_{i} }^{ik_{\overline {n}_{i} } } \ldots q_{M_{i} ,\overline {n}_{i} \cdot \aleph }^{ik_{\overline {n}_{i} } } \end {array}\right )\left (\begin {array}{c} {\Delta \overline {u}_{1}^{i} } \\ {\ldots } \\ {\Delta \overline {u}_{\overline {n}_{i} \cdot \aleph }^{i} } \end {array}\right )=\left (\begin {array}{c} {\Delta {\rm v}_{1}^{i} } \\ {\ldots } \\ {\Delta {\rm v}_{M_{i} }^{i} } \end {array}\right ). \end {aligned}$$

In the above notation, relations (A.7) acquire the form

$$ \left (\begin {array}{{ccc}} {c_{1,1}^{i} } & {\ldots } & {c_{1,(n_{i} \cdot \aleph )}^{i} } \\ {\ldots } & {\ldots } & {\ldots } \\ {c_{M_{i} ,1}^{i} } & {\ldots } & {c_{M_{i} ,(n_{i} \cdot \aleph )}^{i} } \end {array} \right )\left (\begin {array}{c} {\Delta u_{1}^{i} } \\ {\ldots } \\ {\Delta u_{n_{i} \cdot \aleph }^{i} } \end {array}\right )=\left (\begin {array}{c} {\Delta {\rm v}_{1}^{i} } \\ {\ldots } \\ {\Delta {\rm v}_{M_{i} }^{i} } \end {array}\right ),\quad i\in I,$$
(A.13)
or, in matrix form,
$$ C_{i} \Delta u^{i} =\Delta \mathrm {v}^{i} ,\quad i\in I.$$

Then (A.13) can be written as

$$ \begin {aligned} &\left (\begin {array}{{ccc}} {\stackrel {_\frown }{c}{\!}_{1,1}^{i} } & {\ldots } & {\stackrel {_\frown }{c}{\!}_{1,M_{i} }^{i} } \\ {\ldots } & {\ldots } & {\ldots } \\ {\stackrel {_\frown }{c}{\!}_{M_{i} ,1}^{i} } & {\ldots } & {\stackrel {_\frown }{c}{\!}_{M_{i} ,M_{i} }^{i} } \end {array} \right )\left (\begin {array}{c} {\Delta \stackrel {_\frown }{u}{\!}_{1}^{i} } \\ {\ldots } \\ {\Delta \!\stackrel {_\frown }{u}{\!}_{M_{i} }^{i} } \end {array}\right ) \\[.3em] &\qquad \qquad {}+\left (\begin {array}{{ccc}} {\stackrel {_\smile }{c}{\!}_{1,1}^{i} } & {\ldots } & {\stackrel {_\smile }{c}{\!}_{1,(n_{i} \cdot \aleph -M_{i} )}^{i} } \\ {\ldots } & {\ldots } & {\ldots } \\ {\stackrel {_\smile }{c}{\!}_{M_{i} ,1}^{i} } & {\ldots } & {\stackrel {_\smile }{c}{\!}_{M_{i} ,(n_{i} \cdot \aleph -M_{i} )}^{i} } \end {array} \right )\left (\begin {array}{c} {\Delta \stackrel {_\smile }{u}{\!}_{1}^{i} } \\ {\ldots } \\ {\Delta \!\stackrel {_\smile }{u}{\!}_{(n_{i} \cdot \aleph )-M_{i} }^{i} } \end {array}\right )=\left (\begin {array}{c} {\Delta {\rm v}_{1}^{i} } \\ {\ldots } \\ {\Delta {\rm v}_{M_{i} }^{i} } \end {array}\right ), \end {aligned}$$
or in the form
$$ \stackrel {_\frown }{C}_{i} \Delta \stackrel {_\frown }{u}{\!}^{i} +\stackrel {_\smile }{C}_{i} \Delta \stackrel {_\smile }{u}{\!}^{i} =\Delta \mathrm {v}^{i} ,\quad i\in I.$$
(A.14)
In view of (A.13), \(\stackrel {_\frown }{C}_{i} \) has an inverse matrix. Then from (A.14) we have
$$ \Delta \!\stackrel {_\frown }{u}{\!}^{i} =-\left (\stackrel {_\frown }{C}_{i} \right )^{-1} \stackrel {_\smile }{C}_{i} \Delta \stackrel {_\smile }{u}{\!}^{i} +\stackrel {_\frown }{C}{\!}_{i} ^{-1} \Delta \mathrm {v}^{i} ,\quad i\in I.$$
(A.15)

According to (A.15), we take the \(M_{i} \)-dimensional increment vector

$$ {\Delta \!\stackrel {_\frown }{u}{\!}^{i}= (\Delta \stackrel {_\frown }{u}{\!}_{1}^{i} ,\ldots ,\Delta \stackrel {_\frown }{u}{\!}_{M_{i} }^{i} )^{\mathrm {T}} =\left (\Delta u_{\stackrel {_\frown }{\mu }_{1} }^{i} ,\ldots ,\Delta u^{i}_{\stackrel {_\frown }{\mu }_{M_{i} } } \right )^{\mathrm {T}} }$$
to be dependent, and the \((n_{i} \aleph -M_{i} ) \)-dimensional vector
$$ {\Delta \!\stackrel {_\smile }{u}{\!}^{i} =(\Delta \stackrel {_\smile }{u}{\!}_{1}^{i} ,\ldots , \Delta \stackrel {_\smile }{u}{\!}_{n_{i} \cdot \aleph -M_{i} }^{i} )^{\mathrm {T}} =\left (\Delta u_{\stackrel {_\smile }{\mu }_{1} }^{i} ,\ldots ,\Delta u_{\stackrel {_\smile }{\mu } _{{n_{i}\cdot \aleph -M_{i} }}} ^{i} \right )^{\mathrm {T}} }$$
to be independent. Let us take into account (A.15) in the expression in the last brackets in (A.12) to obtain
$$ \begin {aligned} &\sum _{i\in I}\left (\left (\frac {\partial \Phi }{\partial \underline {u}^{i} } -(\underline {\psi }^{i} )^{\mathrm{T}} \right )\Delta \underline {u}^{i} + \left (\frac {\partial \Phi }{\partial \overline {u}^{i} } +(\overline {\psi }{}^{i} )^{\mathrm{T}} \right )\Delta \overline {u}{}^{\thinspace i} \right )= \sum _{i\in I}\left (\frac {\partial \Phi }{\partial u^{i} } +(\psi ^{i} )^{\mathrm {T}} \right )\Delta u^{i}\\ &\qquad {}=\sum _{i\in I}\left (\frac {\partial \Phi }{\partial \stackrel {_\frown }{u}{\!}^{i} } +(\stackrel {_\frown }{\psi }{\!}^{i} )^{\mathrm {T}} \right )\Delta \stackrel {_\frown }{u}{\!}^{i} +\sum _{i\in I}\left (\frac {\partial \Phi }{\partial \stackrel {_\smile }{u}{\!}^{i} } +(\stackrel {_\smile }{\psi }{\!}^{i} )^{\mathrm {T}} \right )\Delta \stackrel {_\smile }{u}{\!}^{i} \\ &\qquad {}=\sum _{i\in I}\left (\frac {\partial \Phi }{\partial \stackrel {_\smile }{u}{\!}^{i} } +(\stackrel {_\smile }{\psi }{\!}^{i} )^{\mathrm {T}} \right )\Delta \stackrel {_\smile }{u}{\!}^{i} -\sum _{i\in I}\left (\frac {\partial \Phi }{\partial \stackrel {_\frown }{u}{\!}^{i} } +(\stackrel {_\frown }{\psi }{\!}^{i} )^{\mathrm {T}} \right )\stackrel {_\frown }{C}{\!}_{i} ^{-1} \stackrel {_\smile }{C}_{i} \Delta \stackrel {_\smile }{u}{\!}^{i} \\ &\qquad \qquad {}+\sum _{i\in I}\left (\frac {\partial \Phi }{\partial \stackrel {_\frown }{u}^{i} } +(\stackrel {_\frown }{\psi }{\!}^{i} )^{\mathrm {T}} \right ) \stackrel {_\frown }{C}_{i} {}^{-1} \Delta \mathrm {v}^{i} . \end {aligned}$$
Taking this relation into account in (A.12), for the increment of the functional we finally obtain
$$ \begin {aligned} \Delta \mathfrak {I}\thinspace (w,{\rm v}, \xi )&=\sum _{i\in I}\sum _{k\in I_{i}^{+} } \int \limits _{0}^{l^{ki} }\left [\frac {\partial f_{0}^{ki} }{\partial u^{ki} } -\left (\frac {d\psi ^{ki} (x)}{dx} \right )^{\mathrm {T}} -\big (\psi ^{ki} (x)\big )^{T} A^{ki} (x)\right ]\Delta u^{ki} (x)dx \\ &\qquad {}-\sum _{i\in I}\sum _{k\in I_{i}^{+} }\left [\left (\left . \frac {d\psi ^{ki} (x)}{dx} \right |_{x=\xi ^{ki} } \right )^{\mathrm {T}} B^{ki} w^{ki} -\frac {\partial \Phi }{\partial \xi ^{ki} } \right ] \Delta \xi ^{ki} \\ &\qquad {}-\sum _{i\in I}\sum _{k\in I_{i}^{+} }\left [\left (\psi ^{ki} (\xi ^{ki} )\right )^{\mathrm {T}} B^{ki} -\frac {\partial \Phi }{\partial w^{ki} } \right ] \Delta w^{ki} \\ &\qquad {}+\sum _{i\in I}\left [\frac {\partial \Phi }{\partial {\rm v}^{i} } +\left (\frac {\partial \Phi }{\partial \stackrel {_\frown }{u}{\!}^{i} } +(\stackrel {_\frown }{\psi }{\!}^{i} )^{\mathrm {T}} \right )\stackrel {_\frown }{C}{\!}_{i} ^{-1} \right ] \Delta {\rm v}^{i} \\ &\qquad {}+\sum _{i\in I}\left [\frac {\partial \Phi }{\partial \stackrel {_\smile }{u}{\!}^{i} } +(\stackrel {_\smile }{\psi }{\!}^{i} )^{\mathrm {T}} -\left (\frac {\partial \Phi }{\partial \stackrel {_\frown }{u}{\!}^{i} } +(\stackrel {_\frown }{\psi }{\!}^{i} )^{\mathrm {T}} \right )\stackrel {_\frown }{C}{\!}_{i} ^{-1} \stackrel {_\smile }{C}_{i} \right ]\Delta \stackrel {_\smile }{u}{\!}^{i} +\eta . \end {aligned}$$
(A.16)

Using the arbitrariness of the vector functions \(\psi ^{ki} (x)\in \mathrm {R}^{\aleph } \), \( k\in I_{i}^{k} \), \( i\in I \), we require from them that the expressions in the brackets (the factors \(\Delta u^{ki} \) and \(\Delta \!\stackrel {_\smile }{u}{\!}^{i}\)) be zero. We obtain the boundary value problem (3.5), (3.6) for the vector functions \(\psi ^{ki}(x) \), \( k\in I_{i}^{+} \), \( i\in I \), which we refer to as the adjoint of problem (2.1), (2.2). The desired component of the gradient of the functional \(\mathfrak {I}\thinspace (w,\xi ,{\rm v)}\) will be determined by the linear parts of the increment of the functional (A.16) based on the increments \(\Delta w^{ki} \), \(\Delta \xi ^{ki} \), and \(\Delta {\rm v}^{i} \) using formulas (3.2), (3.3), and (3.4).

Thus, Theorem 2 can be considered to be proved. \(\quad \blacksquare \)

The proof of Theorem 3 follows from the differentiability of the functional of the problem, the compactness of the admissible sets \(\Omega _{w^{ki} } \times \Omega _{\xi ^{ki} } \times \Omega _{{\rm v}^{i} } \), \( k\in I_{i}^{+} \), \( i\in I \), the finite dimension of the problem parameter vector to be optimized, and the necessary optimality conditions in variational form in optimization problems [10, 11].

Proof of Theorem 4. Let \(\alpha _{j}^{id} (x) \) and \(\gamma _{j}^{i} (x) \) be as yet arbitrary differentiable functions satisfying (4.5) and condition (4.6). Let us differentiate condition (4.6) taking into account the \((i,d) \)th subsystem of equations in (2.1). After grouping appropriate terms, for \(d\in I_{i}^{-} \) we obtain

$$ \left [\frac {d\alpha _{j}^{id} (x)}{dx} +\alpha _{j}^{id} (x)A^{id} (x)\right ]u^{id} (x) +\left [-\frac {d\gamma _{j}^{id} (x)}{dx} +\alpha _{j}^{id} (x)\left (f^{id} (x)+B^{ki} w^{ki} \delta (x-\xi ^{ki} )\right )\right ]=0.$$
(A.17)
Taking into account the fact that the functions \( \alpha _{j}^{id} (x)\) and \(\gamma _{j}^{i} (x) \) are arbitrary and the necessity of relation (A.9) being satisfied for all solutions \(u^{id} (x) \) of the \((i,d) \)th subsystem of equations (2.1), we require that the bracketed expressions be zero. It follows that \(\alpha _{j}^{id} (x)\) and \(\gamma _{j}^{i}(x) \) are the solutions of the Cauchy problems (4.5)–(4.6). The proof of Theorem 4 is complete. \(\quad \blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aida-zade, K.R., Ashrafova, Y.R. Optimization of Source Locations and Parameters for Network Structure Objects. Autom Remote Control 82, 1201–1221 (2021). https://doi.org/10.1134/S0005117921070055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921070055

Keywords

Navigation