Skip to main content
Log in

Multi-Loop Adaptive Control of Mobile Objects in Solving Trajectory Tracking Tasks

  • control sciences
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The algorithms of model reference parametric adaptation are considered, providing the astaticism and disturbances estimation. The structure of the control system is suggested allowing to design multivariable controllers providing the movement along the specified trajectories for an object described by kinematics and dynamics of mechanical systems in three-dimensional space. The asymptotic stability of a closed-loop adaptive system including a loop to provide astaticism is proved by the method of Lyapunov functions. The errors analysis is carried out of disturbances estimation by asymptotic observer. The boundaries of the estimation error are shown, and the relations are given to adjust the observer parameters. The results of the numerical investigations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rutkovskii, V. Yu Nonsearching Adaptive Systems and Space Control Systems: Research and Development Projects at the Institute of Control Sciences. Autom. Remote Control 60(no. 6), 791–796 (1999).

    Google Scholar 

  2. Zemlyakov, S. D. & Rutkovskii, V. Yu Some Results of the Theory of Nonsearching Adaptive Systems and Their Application. Autom. Remote Control 62(no. 7), 1115–1131 (2001).

    Article  Google Scholar 

  3. Kleiman, E. G. Identification of Time-Varying Systems. Autom. Remote Control 60(no. 10, part 1), 1371–1402 (1999).

    MATH  Google Scholar 

  4. Kleiman, E. G. Identification of Input Signals in Dynamical Systems. Autom. Remote Control 60, 1675–1685 (1999).

    MathSciNet  MATH  Google Scholar 

  5. Rutkovskii, V.Yu. and Krutova, I.N.A Class of Self-adjusting Systems with Model: Principles of Design and Some Problems of the Theory, 1st All-Union Conf. on Theory and Practice of Self-Adjusting Systems (December 10-14, 1963), Moscow: Nauka, 1965, pp. 46–63.

  6. Rutkovskii, V.Yu. and Ssorin-Chaikov, V.N.Self-tuning Systems with a Test Signal, Proc. I All-Union Conf. on Theory and Practice of Self-Tuning Systems, Moscow, 1965, pp. 93–111.

  7. Zemlyakov, S.D.Some Problem of Analytical Synthesis in Model Reference Control Systems by the Direct Method of Lyapunov. Theory of Self Adaptive Control System, 2nd IFAC Symp. on the Theory of Self-Adaptive Control Systems, England, Teddington, 1965, New York: Hummon Plenum, 1966, pp. 175–179.

  8. Zhang, Dan & Wei, Bin A Review on Model Reference Adaptive Control of Robotic Manipulators. Ann. Rev. Control 43, 188–198 (2017).

    Article  Google Scholar 

  9. Druzhinina, M. V., Nikiforov, V. O. & Fradkov, A. L. Methods of Nonlinear Adaptive Control with Respect to Output. Autom. Remote Control 57, 153–176 (1996).

    MATH  Google Scholar 

  10. Andrievsky, B. R. & Fradkov, A. L. Adaptive Flight Control Based on Parameter Identification Procedure Simultaneously with Sliding Mode Motion. Upravlen. Bolash. Sist. no. 26, 113–144 (2009).

    Google Scholar 

  11. Bushmanova, Yu. A. Combined Control of Scalar Non-Stationary Plants in Systems with an Unobvious Standard. Informat. Sist. Upravlen. no. 2, 165–172 (2007).

    Google Scholar 

  12. Rutkovskii, V. Yu & Glumov, V. M. Dynamics Peculiarities of an Adaptive Control System with Nonlinear Reference Model. I. Autom. Remote Control 78(no. 4), 654–665 (2017).

    Article  MathSciNet  Google Scholar 

  13. Rutkovskii, V. Yu & Glumov, V. M. Dynamics Peculiarities of an Adaptive Control System with Nonlinear Reference Model. II. Autom. Remote Control 78(no. 5), 836–846 (2017).

    Article  MathSciNet  Google Scholar 

  14. Dadenkov, D. A. & Kazantsev, V. P. Synthesis of Electromechanical Control Systems with Nonlinear Adaptive Reference Model. Fundament. Issled. no. 11, 1466–1471 (2014).

    Google Scholar 

  15. Eremin, E. L. A Modified Adaptive System for Controlling the Singlechannel Plant with Inlet Saturation. Informat. Sist. Upravlen. no. 3(49), 119–131 (2016).

    Article  Google Scholar 

  16. Eremin, E. L., Pikul, Z. D. & Telichenko, D. A. Adaptive Control System of Structural-Parametric Uncertain Objects of One Class in a Scheme with Explicit and Implicit Reference Models. Informat. Sist. Upravlen. no. 1(43), 105–114 (2015).

    Google Scholar 

  17. Furtat, I. B. & Tsykunov, A. M. Adaptive Control of Plants of Unknown Relative Degree. Autom. Remote Control 71(no. 6), 1076–1084 (2010).

    Article  MathSciNet  Google Scholar 

  18. Pshikhopov, V. Kh, Medvedev, M. Yu & Krukhmalev, V. A. Base Algorithms of the Direct Adaptive Position-Path Control for Mobile Objects Positioning. Mekhatr. Avtomatiz. Upravlen. no. 4(16), 219–225 (2015).

    Article  Google Scholar 

  19. Pshikhopov, V. Kh, Medvedev, M. Yu & Gurenko, B. V. The Basic Algorithms of Adaptive Position-Trajectory Control System of Mobile Objects. Probl. Upravlen. no. 4, 66–74 (2015).

    Google Scholar 

  20. Medvedev, M. Yu, Rogov, V. A. & Medvedeva, T. N. Position-Path Control of Vehicles with Multiple Loop Adaptation. Izv. YuFU, Tekhn. Nauki no. 7, 101–114 (2016).

    Google Scholar 

  21. Isidori, A. Nonlinear Control Systems. (Springer, London, 1999).

    MATH  Google Scholar 

  22. Burdakov, S. F., Miroshnik, I. V. & Stel’makov, R. E. Sistemy upravleniya dvizheniem kolesnykh robotov (Control Systems of Wheeled Robot Motion). (Nauka, St. Petersburg, 2001).

    Google Scholar 

  23. Byushgens, G. S. & Studnev, R. V. Dinamika samoleta. Prostranstvennoe dvizhenie (Aircraft Dynamics. Spatial Motion). (Mashinostroenie, Moscow, 1983).

    Google Scholar 

  24. Pshikhopov, V. H., Medvedev, M. Yu & Gajduk., A. R. et al. Position-Trajectory Control System for Robot on Base of Airship: Control Algorithms. Mekhatron., Avtomatiz., Upravlen. no. 7, 13–20 (2013).

    Google Scholar 

  25. Bessekerskii, V. A. & Popov, E. P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems). (Nauka, Moscow, 1972).

    Google Scholar 

  26. Alexandrov, A. G. Optimalanyye i adaptivnyye sistemy: uchebnoye posobie (Optimal and Adaptive Systems. Textbook). (Vysshaya Shkola, Moscow, 1989).

    Google Scholar 

  27. Piskunov, N.S.Differentsial’noe i integral’noe ischisleniya dlya vtuzov (Differential and Integral Calculus Technical Colleges), Moscow: Nauka, 1985, vol. 2, 13th ed.

  28. Medvedev, M. Yu Algorithms of an Adaptive Control of Actuating Motors. Mekhatron., Avtomatiz., Upravlen no. 6, 17–22 (2006).

    Google Scholar 

  29. Bucy, R. Nonlinear filtering Theory. IEEE Trans. Automat. Control AC-1(no. 2), 198 (1965).

    Article  MathSciNet  Google Scholar 

  30. Krasovskii, A. A. Cyclic Estimation in Primary Filtering of Sensor Signals. Autom. Remote Control 49(no. 6), 729–735 (1988).

    Google Scholar 

  31. Gantmakher, F.R.Teoriya matrits (Theory of Matrices), Moscow: Fizmatlit, 2004, 5th ed. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.

  32. Babakov, N.A., Voronov, A.A., et al.Teoriya avtomaticheskogo upravleniya: uchebnik dlya vuzov, chast’ I: Teoriya lineinykh sistem avtomaticheskogo upravleniya (Automatic Control Theory: Textbook for Higher Education, vol. I: Theory of Linear Systems for Automatic Control), Voronov, A.A., Ed., Moscow: Vysshaya Shkola, 1986, 2nd ed.

  33. Sedov, L. I. Ploskie zadachi gidrodinamiki i aerodinamiki. (Nauka, Moscow, 1980). Translated under the title Two-dimensional Problems in Hydrodynamics and Aerodynamics, New York: Wiley, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshikhopov, V., Medvedev, M. Multi-Loop Adaptive Control of Mobile Objects in Solving Trajectory Tracking Tasks. Autom Remote Control 81, 2078–2093 (2020). https://doi.org/10.1134/S0005117920110090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920110090

Keywords

Navigation