Skip to main content
Log in

Analysis of internal dynamics in trajectory tracking problems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This work aims to develop a methodology to stabilize the internal dynamics motion considering the second time-derivative trajectory of the system output. For such a purpose, a partitionnement of the generalized coordinates explicit the output and the unobserved coordinates. In sequence, the equation of motion is algebraically modified resulting in a nonlinear differential equation, where states are the unobserved coordinates, and the input represent the second time-derivative of the output related to the original system. A dynamic programming and a collocation method are used to formulate the optimisation problems based on the optimal control theory. The internal dynamics is analyzed; the related optimal feedback control and feedforward control are designed using different methods. The algorithm will search for optimal trajectories of the internal dynamics that stabilizes the system in a constrained motion. The methodology is illustrated in simulation mode considering semi-passive, soft and flexible manipulators in 2D and a rotary inverted pendulum in 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bencsik L, Kovács LL, Zelei A (2017) Stabilization of internal dynamics of underactuated systems by periodic servo-constraints. Int J Struct Stab Dyn 17(05):1740004 https://doi.org/10.1142/S0219455417400041

  2. Bencsik L (2018) The importance and effective analysis of the internal dynamics in flexible systems. IFAC-PapersOnLine 51(22):424–428 https://doi.org/10.1016/j.ifacol.2018.11.597

  3. Rigatos G, Siano P, Abbaszadeh M, Ademi S, Melkikh A (2018) Nonlinear h-infinity control for underactuated systems: the furuta pendulum example. Int J Dyn Control 6:835–847

    Article  MathSciNet  Google Scholar 

  4. Blajer W, Seifried R, Kołodziejczyk K (2015) Servo-constraint realization for underactuated mechanical systems. Arch Appl Mech 85:1191–1207

    Article  Google Scholar 

  5. Garriga-Casanovas A, Collison I, Rodriguez y Baena F (2018) Toward a common framework for the design of soft robotic manipulators with fluidic actuation. Soft Rob 5(5):622–649

    Article  Google Scholar 

  6. Franco E (2022) Energy shaping control of hydraulic soft continuum planar manipulators. IEEE Control Syst Lett 6:1748–1753

    Article  MathSciNet  Google Scholar 

  7. Belke CH, Paik J (2017) Mori: a modular origami robot. IEEE/ASME Trans Mechatron 22(5):2153–2164

    Article  Google Scholar 

  8. Book WJ, Maizza-Neto O, Whitney DE (1975) Feedback control of two beam, two joint systems with distributed flexibility. J Dyn Syst Meas Contr 97(4):424–431

    Article  Google Scholar 

  9. Korayem MH, Nohooji HR (2008) Trajectory optimization of flexible mobile manipulators using open-loop optimal control method. LNCS Lecture Notes Comput Sci 5314:54–63

    Article  Google Scholar 

  10. Fenili A, Balthazar JM (2011) The rigid-flexible nonlinear robotic manipulator: modeling and control. Commun Nonlinear Sci Numer Simul 16(5):2332–2341

    Article  Google Scholar 

  11. Cristofaro A, De Luca A, Lanari L (2021) Linear-quadratic optimal boundary control of a one-link flexible arm. IEEE Control Syst Lett 5(3):833–838

    Article  MathSciNet  Google Scholar 

  12. Yadav KP, Kumar RP (2022) Biped dynamic walker modeling and control for underactuated gait cycle. Int J Dyn Control 10:1138–1147

    Article  MathSciNet  Google Scholar 

  13. Pellicano MFF (1997) Nonlinear dynamics of a beam on elastic foundation. Nonlinear Dyn 14:335–355

    Article  MathSciNet  MATH  Google Scholar 

  14. Mitsi S, Natsiavas S, Tsiafis I (1998) Dynamics of nonlinear oscillators under simultaneous internal and external resonances. Nonlinear Dyn 16:23–39

    Article  MathSciNet  MATH  Google Scholar 

  15. Suzumori K, Miyagawa T, Kimura M, Hasegawa Y (1999) Micro inspection robot for 1-in pipes. IEEE/ASME Trans Mechatron 4(3):286–292

    Article  Google Scholar 

  16. Gerboni G, Ranzani T, Diodato A, Ciuti G, Cianchetti M, Menciassi A (2015) Modular soft mechatronic manipulator for minimally invasive surgery (MIS): overall architecture and development of a fully integrated soft module. Meccanica 50(11):2865–2878

    Article  Google Scholar 

  17. Franco E, Garriga-Casanovas A, Tang J, RodriguezyBaena F, Astolfi A (2022) Adaptive energy shaping control of a class of nonlinear soft continuum manipulators. IEEE ASME Trans Mechatron 27(1):280–291. https://doi.org/10.1109/TMECH.2021.3063121

  18. Toglia C, Sabatini M, Gasbarri P, Palmerini GB (2011) Optimal target grasping of a flexible space manipulator for a class of objectives. Acta Astronaut 68(7):1031–1041

    Article  Google Scholar 

  19. Kumar BP (2019) andPratiher: modal characterization with nonlinear behaviors of a two-link flexible manipulator. Arch Appl Mech 89:1201–1220

    Article  Google Scholar 

  20. Géradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. Wiley, New York, p 327

    Google Scholar 

  21. Bastos G (2021) A stable reentry trajectory for flexible manipulators. Int J Control 94(5):1297–1308

    Article  MathSciNet  MATH  Google Scholar 

  22. Bastos G (2022) A non-inherent parametric estimation for dynamical equivalence of flexible manipulators. Optim Control Appl Methods 43(3):825–841

    Article  MathSciNet  Google Scholar 

  23. Blajer W, Dziewiecki K, Kołodziejczyk K, Mazur Z (2011) Inverse dynamics of underactuated mechanical systems: a simple case study and experimental verification. Commun Nonlinear Sci Numer Simul 16(5):2265–2272

    Article  MathSciNet  MATH  Google Scholar 

  24. Seifried R (2014) Dynamics of underactuated multibody system. Springer, Berlin

    Book  MATH  Google Scholar 

  25. Brüls O, Bastos G, Seifried R (2014) A stable inversion method for constrained feedforward control of flexible multibody systems. J Comput Nonlinear Dyn 9:011014

    Article  Google Scholar 

  26. Bastos G, Brüls O (2020) Analysis of open-loop control design and parallel computation for underactuated manipulators. Acta Mech 231:2439–2456

    Article  MathSciNet  MATH  Google Scholar 

  27. Bastos G, Seifried R, Brüls O (2017) Analysis of stable model inversion methods for constrained underactuated mechanical systems. Mech Mach Theory 111:99–117

    Article  Google Scholar 

  28. Bastos G Franco E (2023) Dynamic tube model predictive control for a class of soft manipulators with fluidic actuation. Int J Robust Nonlinear Control 1–20. https://doi.org/10.1002/rnc.6598

  29. Allgower F, Findeisen R, Nagy ZK (2004) Nonlinear model predictive control: from theory to application. J Chin Inst Chem Eng 35(3):299–315

    Google Scholar 

  30. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  31. Betts JT (2010) Pratical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics, USA, p 434

  32. Bastos G, Franco E (2021) Energy shaping dynamic tube-MPC for underactuated mechanical systems. Nonlinear Dyn 106:359–380

    Article  Google Scholar 

  33. Diehl M, Gros S (2018) Numerical optimal control. Syscop, Freiburg, Germany. http://www.syscop.de/numericaloptimalcontrol

  34. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. ASME J Appl Mech 60:371–375

  35. Arnold M, Brüls O (2007) Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst Dyn 18(2):185–202

    Article  MathSciNet  MATH  Google Scholar 

  36. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech 85:67–94

    Google Scholar 

  37. Shi B, Peng H, Wang X, Zhong W (2022) A symplectic direct method for motion-driven optimal control of mechanical systems. Commun Nonlinear Sci Numer Simul 111:106501

    Article  MathSciNet  MATH  Google Scholar 

  38. Fisette P, Samin JC, Vaneghem B (1996) Simulation of flexible multibody systems: coordinate partitioning method in an implicit integration scheme. In: Second ECCOMAS conference on numerical methods in engineering

  39. Godage IS, Wirz R, Walker ID, Webster RJ (2015) Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach. Soft Rob 2(3):96–106

    Article  Google Scholar 

  40. Mattioni A, Wu Y, Ramirez H, Le Gorrec Y, Macchelli A (2020) Modelling and control of an IPMC actuated flexible structure: a lumped port Hamiltonian approach. Control Eng Pract 101:104498

    Article  Google Scholar 

  41. Franco E, Garriga-Casanovas A (2021) Energy-shaping control of soft continuum manipulators with in-plane disturbances. Int J Rob Res 40(1):236–255

    Article  Google Scholar 

  42. Yu Y-Q, Howell LL, Lusk C, Yue Y, He M-G (2005) Dynamic modeling of compliant mechanisms based on the pseudo-rigid-body model. J Mech Des 127(4):760. https://doi.org/10.1115/1.1900750

    Article  Google Scholar 

  43. Gupta N, Dewan L (2019) Modeling and simulation of rotary–rotary planer inverted pendulum. J Phys Conf Ser 1240(1):012089

    Article  Google Scholar 

  44. Bastos GJ, Brüls O (2010) Trajectory optimization of flexible robots using an optimal control approach. In: Proceedings of the 1st joint international conference on multibody system dynamics

Download references

Funding

The author declare that he has no special funding related to this work.

Author information

Authors and Affiliations

Authors

Contributions

I am single author of this work.

Corresponding author

Correspondence to Guaraci Bastos Jr..

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest to this work.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, G. Analysis of internal dynamics in trajectory tracking problems. Int. J. Dynam. Control 11, 2870–2885 (2023). https://doi.org/10.1007/s40435-023-01161-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01161-1

Keywords

Navigation