Skip to main content
Log in

Sufficient Conditions for Terminal Invariance of Stochastic Jump Diffusion Systems

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Sufficient conditions for the terminal invariance of nonlinear dynamic stochastic controlled systems (jump diffusions) are formulated and proved. The jump component has the form of an integral over a random Poisson measure. The parameters of this measure (the intensity and distribution of the values of jumps) are assumed to change over time. The conditions of invariance with respect to perturbations for a given initial state and also the conditions of absolute invariance (which ensure the constancy of a terminal criterion for any initial state) are proposed. The results are applied to a number of model examples, which include the numerical simulation and analytical study of the designed terminally invariant dynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rozonoer, L. I. A Variational Approach to the Problem of Invariance of Automatic Control Systems. Autom. Remote Control 24(no. 6), 680–743 (1963). ; no. 7, pp. 793–800.

    MathSciNet  MATH  Google Scholar 

  2. Khrustalev, M. M. Necessary and Sufficient Conditions of Invariance. Autom. Remote Control 29(no. 4), 540–544 (1968).

    MathSciNet  Google Scholar 

  3. Khrustalev, M. M. Metody teorii invariantnosti v zadachakh sinteza zakonov terminalanogo upravleniya letatelanymi apparatami (Methods of Invariance Theory in Terminal Control Design Problems for Aircrafts). (Mosk. Aviats. Inst, Moscow, 1987).

    Google Scholar 

  4. Khrustalev, M. M., Plotnikov, Ju. P. & Belov, V. A. The Invariant Control of Vehicle Descent into the Atmosphere. Acta Astronautica no. 5-6, 357–367 (1976).

    Article  Google Scholar 

  5. Khrustalev, M.M.Weak Invariance of Stochastic Diffusion Systems, Tr. XI Mezhdun. Chetaevskoi Konf. "Analiticheskaya mekhanika, ustoichivost’ i upravlenie” (Proc. XI Int. Chetaev Conf. "Analytical Mechanics, Stability, and Control”), vol. 3, part III, Kazan: Kazansk. Issled. Tekh. Univ. (Kazansk. Aviats. Inst.), 2017, pp. 171–177.

  6. Khrustalev, M. M. Invariance of Stochastic Diffusion Systems. Dokl. Math. 96(no. 2), 535–537 (2017).

    Article  MathSciNet  Google Scholar 

  7. Khrustalev, M. M. Terminal Invariance of Stochastic Diffusion Systems. Autom. Remote Control 79(no. 8), 1434–1449 (2018).

    Article  MathSciNet  Google Scholar 

  8. Khrustalev, M.M.Terminal Invariance of Linear Stochastic Diffusion Systems, Tr. 13 Vseross. soveshchaniya po problemam upravleniya (VSPU-XIII) (Proc. 13 All-Russian Meeting on Control Problems (AMCP-13)), Moscow: Inst. Problem Upravlen., 2019, pp. 1305–1309.

  9. Korolyuk, V. S., Portenko, N. I., Skorokhod, A. V. & Turbin, A. F. Spravochnik po teorii veroyatnostei i matematicheskoi statistike (Handbook of Probability Theory and Mathematical Statistics). (Nauka, Moscow, 1985).

    MATH  Google Scholar 

  10. Øksendal, B. & Sulem, A. Applied Stochastic Control of Jump Diffusions. (Springer, Berlin-Heidelberg, 2005).

    MATH  Google Scholar 

  11. Rybakov, K.A.Sufficient Conditions of Optimality in a Control Problem for Jump Diffusion Systems, Tr. Vseross. soveshchaniya po problemam upravleniya (VSPU-2014) (Proc. All-Russian Meeting on Control Problems (AMCP-2014)), Moscow: Inst. Problem Upravlen., 2014, pp. 734–744.

  12. Averina, T. A. & Rybakov, K. A. Two Methods for Analysis of Stochastic Systems with Poisson Component. Differ. Uravn. Protsessy Upravlen. no. 3, 85–116 (2013).

    MATH  Google Scholar 

  13. Paraev, Yu. I. Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i filatratsii (Introduction to Statistical Dynamics of Control and Filtering Processes). (Sovetskoe Radio, Moscow, 1976).

    Google Scholar 

  14. Platen, E. & Bruti-Liberati, N. Numerical Solution of Stochastic Differential Equations with Jumps in Finance. (Springer, Berlin-Heidelberg, 2010).

    Book  Google Scholar 

  15. Yin, G. & Zhu, C. Hybrid Switching Diffusions. (Springer, New York, 2010).

    Book  Google Scholar 

  16. Karachanskaya, E. V. The Generalized Itô-Venttsel’ Formula in the Case of a Noncentered Poisson Measure, a Stochastic First Integral, and a First Integral. Sib. Adv. Math. 25, 99–122 (2015).

    Article  MathSciNet  Google Scholar 

  17. Miller, B. M. & Pankov, A. R. Teoriya sluchainykh protsessov v primerakh i zadachakh (Theory of Random Processes in Examples and Problems). (Fizmatlit, Moscow, 2002).

    Google Scholar 

  18. Gikhman, I. I. & Skorokhod, A. V. Stokhasticheskie differentsial’nye uravneniya. (Naukova Dumka, Kiev, 1968). Translated under the title Stochastic Differential Equations, Berlin–Heidelberg: Springer-Verlag, 1972.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix

Before proceeding to the substantiation of the results obtained in this paper, present the following proposition without proof.

Proposition 1

Due to Definitions 1and 2and the notations (5)–(10), for any initial condition (t0x0) ∈ B0, any function φ(⋅) ∈ Φ, and any time instant t ∈ [t0tF], the Itô formula [9, 10, 13, 18]

$$\begin{array}{ccc}d\varphi (t,x(t))=L(t,x(t),u(t,\gamma (x(t),v(t))),v(t))dt\\ +S(t,x(t),u(t,\gamma (x(t),v(t))),v(t))dw(t)\\ +\mathop{\int}\limits_{{{\mathbb{R}}}^{r}}\Gamma (t,x({t}^{-}),u(t,\gamma (x({t}^{-}),v)),v)\hat{\mu }(dt\times dv)\end{array}$$
(A.1)

or equivalently,

$$\begin{array}{cccc}\varphi (t,x(t))=\varphi ({t}_{0},{x}_{0})+\mathop{\int}\limits_{{t}_{0}}^{t}L(s,x(s),u(s,\gamma (x(s),v(s))),v(s))ds\\ +\mathop{\int}\limits_{{t}_{0}}^{t}S(s,x(s),u(s,\gamma (x(s),v(s))),v(s))dw(s)\\ +\mathop{\sum }\limits_{j=1}^{l}\mathop{\sum }\limits_{k=1}^{{\tilde{P}}_{j}({t}_{0},t)}{\Gamma }^{(j)}\left({t}_{k}^{(j)},x\left({t}_{k}^{(j)-}\right),u\left({t}_{k}^{(j)},\gamma \left(x\left({t}_{k}^{(j)-}\right),v\left({t}_{k}^{(j)}\right)\right)\right),v\left({t}_{k}^{(j)}\right)\right)\\ -\mathop{\int}\limits_{{t}_{0}}^{t}\int_{\Theta }\Gamma (s,x({s}^{-}),u(s,\gamma (x({s}^{-}),v)),v)\Pi (s,dv)ds,\end{array}$$
(A.2)

holds with probability 1 on the set D(t0x0).

The rationale for Proposition 1 can be found in [10, 13]; its rigorous proof, in [18]. The following proofs are based on this proposition and, in the rest of their parts, practically repeat the ones from [7]. Therefore, they are presented here in a rather short form.

Proof of Theorem 1. Let a point (t0x0) ∈ B0 be fixed. Due to conditions (ii)–(iv) of the theorem, the Itô formula (A.2) leads to the equality

$$\varphi (t,x(t))=\varphi ({t}_{0},{x}_{0})+\mathop{\int}\limits_{{t}_{0}}^{t}\eta (s)ds,$$

holding almost surely on D(t0x0). In particular, for t = tF, condition (i) implies the relation (11). As a result, by Definition 3 the system (1) is invariant with respect to perturbations.

Proof of Theorem 2. Let a point (t0x0) ∈ B0 be arbitrary. Due to conditions (iii)–(v) of the theorem, the Itô formula (A.1) leads to the equality

$$d\varphi (t,x(t))=\frac{\eta (t)-A\varphi (t,x(t))}{{t}_{F}-t}dt,$$

holding almost surely on D(B0) and almost everywhere on [tStF]. This equality represents an ordinary differential equation for the function φ*(t): = φ(tx(t)) with an arbitrary initial condition φ*(t0) = φ(t0x0) at an arbitrary initial point t0. This equation has the solution [7] of the form

$${\varphi }^{* }(t)={({t}_{F}-t)}^{A}\left[\frac{\varphi ({t}_{0},{x}_{0})}{{({t}_{F}-{t}_{0})}^{A}}+\mathop{\int}\limits_{{t}_{0}}^{t}\frac{\eta (s)}{{({t}_{F}-s)}^{A+1}}ds\right]$$

on the interval [t0tF). It can be demonstrated (see [7, Lemma 1]) that for t = tF, due to condition (i) of the theorem, this solution admits of the continuous extension

$$\varphi ({t}_{F},x({t}_{F}))={\varphi }^{* }({t}_{F}^{-})=\frac{\eta ({t}_{F})}{A}.$$

Hence, condition (ii) implies the relation (12), and the system (1) is absolutely invariant by Definition 4.

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 20-08-00400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrustalev, M., Tsarkov, K. Sufficient Conditions for Terminal Invariance of Stochastic Jump Diffusion Systems. Autom Remote Control 81, 2062–2077 (2020). https://doi.org/10.1134/S0005117920110089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920110089

Keywords

Navigation