Skip to main content
Log in

A Group-Theoretic Approach to the Reducibility Problem of Optimal Processes

  • nonlinear systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2020

This article has been updated

Abstract

The reducibility problem of optimal processes is posed, and a group-theoretic approach to its solution is proposed. This approach is based on the Lie–Ovsiannikov infinitesimal apparatus [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Ovsiannikov, L. V. Gruppovoi analiz differentsialanykh uravnenii, Moscow: Nauka, 1978. Translated under the title Group Analysis of Differential Eq.s. (Academic, New York, 2014).

    Google Scholar 

  2. Boretskiy, I. F. & Pavlov, V. G. On Some Symmerty-Related Properties of Dynamic Systems, in Kibernetika i vychislitelanaya tekhnika (Cybernetics and Computer Science) 47, (25–34. Akad. Nauk Ukr. SSR, Kiev, 1980).

    Google Scholar 

  3. Brockett, R.W.Lie Algebras and Lie Groups in Control Theory, in Geometric Methods in System Theory, Mayne, D.Q. and Brockett, R.W., Eds., NATO Advanced Study Institutes Series (Series C—Mathematical and Physical Sciences), Springer: Dordrecht, 1973, vol. 3, pp. 43–82.

  4. Boretskiy, I. F. & Pavlov, V. G. On Uniqueness of Decomposition in a Linear Optimal Control Problem with a Quadratic Performance Criterion. Autom. Remote Control 40(no. 11), 1563–1568 (1979).

    MathSciNet  Google Scholar 

  5. Kukhtenko, A. I. Basic Problems in Control Theory of Complex Systems, in Slozhnye sistemy upravleniya (Complex Control Systems) 1, (3–37. Inst. Kibern. Akad. Nauk Ukr. SSR, Kiev, 1968).

    Google Scholar 

  6. Mozhaev, G. V. On the Use of Symmetry in Linear Optimal Control Problems with a Quadratic Performance Criterion. Autom. Remote Control 36(no. 6), 892–899 (1975).

    MathSciNet  Google Scholar 

  7. Udilov, V. V. & Kovbasa, G. T. On Decomposition of Multidimensional Symmetric Linear Automatic Control Systems, in Slozhnye sistemy upravleniya (Complex Control Systems) (pp. 65–81. Akad. Nauk Ukr. SSR, Kiev, 1972).

    Google Scholar 

  8. Shaykin, M. Ye Group-Theoretic Methods of Decomposition of Symmetrical Multivariable Dynamical Systems. Autom. Remote Control 34(no. 9), 1383–1392 (1973).

    Google Scholar 

  9. Ramar, K. & Ramaswami, B. Transformation of Time-Variable Multi-Input Systems to a Canonical Form. IEEE Trans. Automat. Control AC-16, 371–374 (1971).

    Article  MathSciNet  Google Scholar 

  10. Pavlovskii, Yu. N. Group Properties of Controlled Dynamic Systems and Phase Organizational Structures. I. Zh. Vychisl. Mat. Mat. Fiz. 11(no. 4), 862–872 (1971).

    Google Scholar 

  11. Pavlovskii, Yu. N. GroupProperties of Controlled Dynamic Systems and Phase Organizational Structures. II. Zh. Vychisl. Mat. Mat. Fiz. 11(no. 5), 1093–1103 (1971).

    Google Scholar 

  12. Pavlovskii, Yu. N. On the Aggregation and Design of Hierarchical Control Structures for a Class of Complex Systems. Zh. Vychisl. Mat. Mat. Fiz. 11(no. 6), 1510–1520 (1971).

    Google Scholar 

  13. Pavlovskii, Yu. N. Aggregation, Decomposition, Group Properties, and Decomposition Structures of Dynamic Systems, in Kibernetika i vychislitelanaya tekhnika (Cybernetics and Computer Science) 39, (53–63. Naukova Dumka, Kiev, 1978).

    Google Scholar 

  14. Elkin, E. N. On the Aggregation Conditions of Controlled Dynamic Systems. Zh. Vychisl. Mat. Mat. Fiz. 18(no. 4), 928–934 (1978).

    MathSciNet  Google Scholar 

  15. Boretskiy, I.F., Pavlov, V.G.Group-Theoretic Interpretation of Smooth Dynamic System Sensitivity. Autom. Remote Control, 1980, vol. 41, no. 2.

  16. Garaev, K.G., Pavlov, V.G., Continuous Groups of Transformations in the Sensitivity Problem of Distributed Parameter Systems, Tr. V Vsesoyuznogo soveshchaniya “Teoriya invariantnosti i ee primenenie” (Proc. 5th All-Union Meeting “Invariance Theory and Its Applications”), Kiev, 1979, 330-334.

  17. Pavlov, V.G., Application of the Concept of Infinitesimal Transformation to Sensitivity Analysis of Linear Optimal Systems, in Tr. Kazan. Aviats. Inst. (Proc. Kazan Aviat. Inst.), 1971, vol. 135, 3-9.

  18. Boretskiy, I.F., Upravlyaemost’ i nablyudaemost’ nelineinykh sistem pri otobrazheniyakh (The Controllability and Observability of Nonlinear Systems under Mappings), Available from VINITI, Moscow, no. 9541981, 16-22.

  19. Boretskiy, I. F. & Pavlov, V. G. Group-Theoretic Interpretation of Some Properties of a Linear Dynamic System. Autom. Remote Control 40(no. 2), 163–165 (1979).

    Google Scholar 

  20. Kukhtenko, A. I. Abstract Theory of Systems. State-of-the-Art and Development Trends. in Kibernetika i vychislitelanaya tekhnika (Cybernetics and Computer Science) 15, (4–22. Naukova Dumka, Kiev, 1972).

    Google Scholar 

  21. Semenov, V. N. On the Controllability of Nonlinear Dynamic Control Systems, in Kibernetika i vychislitelanaya tekhnika (Cybernetics and Computer Science) 8, (38–40. Naukova Dumka, Kiev, 1971).

    Google Scholar 

  22. Yakovenko, G. N. Approach to the Controllability and Invariance of Dynamic Systems, in Kibernetika i vychislitelanaya tekhnika (Cybernetics and Computer Science) 38, (21–29. Naukova Dumka, Kiev, 1978). Group.

    Google Scholar 

  23. Paul, C. R. & Kuol, L. Controllability and Observability of Linear Dynamical Systems. SIAM J. Control 10(no. 2), 252–264 (1972).

    Article  MathSciNet  Google Scholar 

  24. Wonham, W. M. Dynamic Observers: Geometric Theory. IEEE Trans. Automat. Control AC-15, 258–259 (1970).

    Article  MathSciNet  Google Scholar 

  25. Yakovenko, G. N. Design of Optimal Control by Evolution Trajectories. Autom. Remote Control 33(no. 6), 889–895 (1972).

    MATH  Google Scholar 

  26. Yakovenko, G. N. State Symmetries in Control Systems, in Prikladnaya mekhanika i matematika (Applied Mechanics and Mathematics) (pp. 155–176. Mosk. Fiz.-Tekh. Inst, Moscow, 1992).

    Google Scholar 

  27. Pavlov, V. G. Obtaining Certain Invariant Solutions in a Particular Problem of Regulator Analytical Construction. Autom. Remote Control 33(no. 6), 1054–1057 (1972).

    MATH  Google Scholar 

  28. Ikeda, M. & Sakamoto, K. On the Concept of Symmetry in Pontryaginas Maximum Principle. SIAM J. Control 13, 389–399 (1975).

    Article  MathSciNet  Google Scholar 

  29. Pavlov, V. G. & Properties, Group and Invariant Solutions in the Problem of Analytical Design of Controllers in a Process with Distributed Parameters. Autom, Remote Control 34(no. 8), 1201–1207 (1973).

    MathSciNet  MATH  Google Scholar 

  30. Garaev, K. G. & Kuznetsov, V. K. An Invariant Variational Problem of the Laminar Boundary Layer. J. Appl. Math. Mechan. 75(no. 4), 404–409 (2011).

    Article  MathSciNet  Google Scholar 

  31. Garaev, K. G. On a Problem of Optimal Control of the Laminar Boundary Layer in Incompressible Flow. Russian Aeronaut. 60(no. 2), 299–302 (2017).

    Article  Google Scholar 

  32. Garaev, K. G. & Mukhametzyanov, I. R. Problem of Optimal Control of the Turbulent Boundary Layer on a Permeable Surface in Supersonic Gas Flow. Fluid Dynam. 53(no. 4), 573–581 (2018).

    Article  Google Scholar 

  33. Garaev, K. G. & Mukhametzyanov, I. R. To the Problem of Friction Minimization on Permeable Surfaces at Supersonic Flow Rate, Russian Aeronaut. Iz. Vyssh. Uchebn. Zaved. 61(no. 3), 391–395 (2018).

    Google Scholar 

  34. Chebotarev, N. G. Teoriya grupp Li (Theory of Lie Groups). (Gostekhteoretizdat, Moscow, Moscow, 1940).

    Google Scholar 

  35. Lie, S., Scheffers, G., Vorlesungen über differentialgleichungeh mit bekannten infinitesimalen Transformationen, Leipzig, 1891.

  36. Ovsiannikov, L. V. Gruppovye svoistva differentsialanykh uravnenii (Group Properties of Differential Eq.s). (Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1962).

    Google Scholar 

  37. Meshcherskii, I. V. Raboty po mekhanike tel peremennoi massy (Works on the Mechanics of Variable-Mass Bodies). (Gostekhteoretizdat, Moscow, 1952).

    Google Scholar 

  38. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. & Mishchenko, E. F. Matematicheskaya teoriya optimalanykh protsessov. (Nauka, Moscow, 1983). Translated under the title The Mathematical Theory of Optimal Processes, vol. 4 of L.S. Pontryagin Selected Works, New York–London–Paris–Montreux–Tokyo: Gordon and Breach Science Publishers, 1986.

    Google Scholar 

  39. Bellman, R. Dynamic Programming, Princeton: Princeton Univ. Press, 1957. Translated under the title Dinamicheskoe programmirovanie. (Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  40. Berkovich, L.M., Rozov, N.Kh., A System of Ordinary Differential Eq.s That Is Reducible to the Autonomous Form, Tr. Seminara po differentsiala’nym uravneniyam (Proceedings of the Seminar on Differential Eq.s), Kuibyshev, 1975, 98-114.

  41. Erugin, N. P. Kniga dlya chteniya po obshchemu kursu differentsialanykh uravnenii (A Reading Book for a General Course in Differential Eq.s). (Nauka i Tekhnika, Minsk, 1979).

    MATH  Google Scholar 

  42. Dasarathy, R., Stranivasan, B., O podstanovkakh, svodyashchikh nestatsionarnye sistemy v ekvivalentnye sistemy s postoyannymi koeffitsientami (On Substitutions Reducing Time-Varying Systems to Equivalent Systems with Constant Coefficients), in Ekspress-informatsiya. Sistemy avtomaticheskogo upravleniya (Express Information. Automatic Control Systems), no. 27. Available from VINITI, Moscow.1968.

  43. Lavrent’ev, M. A. & Lyusternik, L. A. Kurs variatsionnogo ischisleniya (A Course in Variational Calculus). (Gostekhizdat, Moscow-Leningrad, 1950).

    Google Scholar 

Download references

Acknowledgements

When writing the Introduction section, the author used the material kindly provided by Professor V.G. Pavlov, to whom the author expresses deep gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.G. Garaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garaev, K. A Group-Theoretic Approach to the Reducibility Problem of Optimal Processes. Autom Remote Control 81, 1167–1175 (2020). https://doi.org/10.1134/S0005117920070012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920070012

Keywords

Navigation