Automation and Remote Control

, Volume 75, Issue 7, pp 1173–1194 | Cite as

Decomposition of a system of incompletely specified Boolean functions defined with a binary decision diagram

  • P. N. BibiloEmail author
Topical Issue


We propose a decomposition method for systems of incompletely specified Boolean functions represented as binary decision diagrams. Minimizing the number of intermediate functions in such a decomposition is intended to improve the performance of Boolean circuits made of library elements. A characteristic feature of our method is the fact that after decomposition (cutting) of the original binary decision diagram one of two decomposition units is represented as a system of DNFs.


Remote Control Boolean Function Partial Function Binary Decision Diagram Root Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanaev, V.S. and Povarich, M.P., Sintez graf-skhem algoritmov vybora reshenii (Synthesis of Flowgraphs for Decision Making Algorithms), Minsk: Nauka i Tekhnika, 1974.Google Scholar
  2. 2.
    Blokh, A.Sh., Graf-skhemy i ikh primenenie (Flowgraphs and Their Applications), Minsk: Vysheishaya Shkola, 1975.Google Scholar
  3. 3.
    Kuznetsov, O.P., Program Realization of Logical Functions and Automata. I, II, Autom. Remote Control, 1977, vol. 38, no. 7, part 2, pp. 1077–1088; no. 9, part 2, pp. 1385–1396.zbMATHGoogle Scholar
  4. 4.
    Akers, S.B., Binary Decision Diagrams, IEEE Trans. Comput., 1978, vol. 27, no. 6, pp. 509–516.CrossRefzbMATHGoogle Scholar
  5. 5.
    Bryant, R.E., Graph-Based Algorithms for Boolean Functions Manipulation, IEEE Trans. Comput., 1986, vol. 35, no. 8, pp. 677–691.CrossRefzbMATHGoogle Scholar
  6. 6.
    Bryant, R.E. and Meinel, C., Ordered Binary Decision Diagrams, in Logic Synthesis and Verification, Hassoun, S., Sasao, T., and Brayton, R.K., Eds., Boston: Kluwer, 2002.Google Scholar
  7. 7.
    Meinel, C. and Theobald, T., Algorithms and Data Structures in VLSI Design: OBDD-Foundations and Applications, Berlin: Springer-Verlag, 1998.CrossRefGoogle Scholar
  8. 8.
    Karpov, Yu.G., MODEL CHECKING. Verifikatsiya parallel’nykh i raspredelennykh programmnykh sistem (Model Checking. Verification of Parallel and Distributed Software Systems), St. Petersburg: BKhVPeterburg, 2010.Google Scholar
  9. 9.
    Bibilo, P.N., Dekompozitsiya bulevykh funktsii na osnove resheniya logicheskikh uravnenii (Decomposition of Boolean Functions Based on Solving Logical Equations), Minsk: Belarus. Navuka, 2009.Google Scholar
  10. 10.
    Zakrevskii, A.D., Logicheskii sintez kaskadnykh skhem (Logical Synthesis of Cascade Circuits), Moscow: Nauka, 1981.Google Scholar
  11. 11.
    Sasao, T., FPGA Design by Generalized Functional Decomposition, in Representation of Discrete Functions, Sasao, T. and Fujita, M., Eds., Boston: Kluwer, 1996, pp. 233–258.CrossRefGoogle Scholar
  12. 12.
    Scholl, C., Functional Decomposition with Applications to FPGA Synthesis, Boston: Kluwer, 2001.CrossRefGoogle Scholar
  13. 13.
    Bibilo, P.N. and Romanov, V.I., Logicheskoe proektirovanie diskretnykh ustroistv s ispol’zovaniem produktsionnofreimovoi modeli predstavleniya znanii (Logical Design of Discrete Devices with Product-Frame Model of Knowledge Representation), Minsk: Belarus. Navuka, 2011.Google Scholar
  14. 14.
    Cortadella, J., Timing-Driven Logic Bi-Decomposition, IEEE Trans. Comput.-Aided Design Integrat. Circuits Syst., 2003, vol. 22, no. 6, pp. 675–685.CrossRefGoogle Scholar
  15. 15.
    Yang, S. and Ciesielski, M., BDS: A BDD-Based Logic Optimization System, IEEE Trans. Comput.-Aided Design Integrat. Circuits Syst., 2002, vol. 21, no. 7, pp. 866–876.CrossRefGoogle Scholar
  16. 16.
    Bibilo, P.N. and Leonchik, P.V., Decomposition of Systems of Boolean Functions Defined by Binary Decision Diagrams, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2011, no. 4, pp. 86–101.Google Scholar
  17. 17.
    Shneider, A.A., Analysis and Classification of Heuristic Graph Vertex Coloring Algorithms, Kibernetika, 1984, no. 4, pp. 15–22.Google Scholar
  18. 18.
    Bibilo, P.N. and Enin, S.V., Sintez kombinatsionnykh skhem metodami funktsional’noi dekompozitsii (Synthesis of Combinatorial Circuits with Functional Decomposition Methods), Minsk: Nauka i Tekhnika, 1987.Google Scholar
  19. 19.
    Knuth, D.E., The Art of Computer Programming, vol. 4A: Combinatorial Algorithms, Part 1, Reading: Addison-Wesley, 2011. Translated under the title Iskusstvo programmirovaniya, tom 4, A. Kombinatornye algoritmy, ch. 1, Moscow: Vil’yams, 2013.Google Scholar
  20. 20.
    Stojkovich, S., Stancović, M., and Stancović, R., Determining Assignment of Incompletely Specified Boolean Functions for Compact Representations by Binary Decision Diagrams, 10 Int. Workshop Boolean Probl., September 19–21, 2012, Freiberg (Sachsen), pp. 233–238.Google Scholar
  21. 21.
    Gavrilov, M.A., Devyatkov, V.V., and Pupyrev, E.I., Logicheskoe proektirovanie diskretnykh avtomatov (Logical Design of Discrete Automata), Moscow: Nauka, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.United Institute of Informatics ProblemsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations