Skip to main content
Log in

Experimental comparison of decomposition methods for systems of Boolean function

  • Computer Methods
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

In this paper, we describe the results of the experimental comparison of programs that implement various decomposition methods for disjunctive normal forms of systems of completely defined Boolean functions. The complexity of a system of disjunctive normal forms is expressed in two ways: by the area of a programmable logic array that implements a system of disjunctive normal forms, or by the number of vertices of a binary decision diagram, which represents a system of Boolean functions. The complexity of the functional expansion of a system’s functions is determined as the sum of the complexities of the subsystem of the functions included in this expansion. The estimates of the complexity are oriented on the synthesis of combinational circuits based on the programmed logical arrays and the library’s logical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Povarov, “On functional separability of Boolean functions,” Dokl. Akad. Nauk SSSR 94, 801–803 (1954).

    MathSciNet  Google Scholar 

  2. A. D. Zakrevskii, Logic Synthesis of Cascade Circuits (Nauka, Moscow, 1981).[in Russian].

    Google Scholar 

  3. R. E. Bryant and C. Meinel, “Ordered binary decision diagrams,” in Logic Synthesis and Verification, Ed. by S. Hassoun, T. Sasao, and R. K. Brayton (Kluwer Academic, Dordrecht, 2002).

    Google Scholar 

  4. D. E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms (Addison-Wesley Professional, Reading, MA, 2011). Pt. 1.

  5. P. N. Bibilo and P. V. Leonchik, “Decomposition of systems of Boolean functions determined by binary decision diagrams,” J. Comput. Syst. Sci. Int. 50, 609 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. N. Bibilo and N. A. Avdeev, VHDL. Effective Use in Design of Digital Systems (SOLON-Press, Moscow, 2006).[in Russian].

    Google Scholar 

  7. R. L. Ashenhurst, “The decomposition of switching functions,” Ann. Comput. Labor. Harvard Univ. 29, 74–116 (1959).

    MathSciNet  MATH  Google Scholar 

  8. H. A. Curtis, A New Approach to the Design of Switching Circuit (Van Nostrand, Princeton, 1962).

    Google Scholar 

  9. J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM J. Res. Dev. 6, 227–238 (1962).

    Article  MathSciNet  Google Scholar 

  10. P. N. Bibilo and S. V. Enin, Synthesis of Combinational Circuits by Methods of Functional Decomposition (Nauka Tekhnika, Minsk, 1987).[in Russian].

    MATH  Google Scholar 

  11. Yu. V. Pottosin and E. A. Shestakov, Tabular Methods for Decomposition of Systems of Completely Specified Boolean Functions (Belarus. Navuka, Minsk, 2006).[in Russian].

    Google Scholar 

  12. D. V. Sadnikov, “Development of tabular method for decomposition of systems of completely specified Boolean functions,” Informatika, No. 2, 79–85 (2005).

    Google Scholar 

  13. P. Porwik and R. S. Stankovic, “Dedicated spectral method of Boolean function decomposition,” Int. J. Appl. Math. Comput. Sci. 16, 271–278 (2006).

    MathSciNet  MATH  Google Scholar 

  14. P. N. Bibilo, Decomposition of Boolean Functions Based on Logic Equations Solutions (Belarus. Navuka, Minsk, 2009).[in Russian].

    Google Scholar 

  15. E. I. Gol’dberg, “Programmable logic matrix decomposition,” Preprint No. 6 (Inst. Tekhn. Kibernet. AN BSSR, Minsk, 1991).

  16. M. A. Perkowski and S. Grugiel, “A survey of literature on function decomposition: Version IV,” Technical report (Portland State University, Department of Electrical Engineering, Portland, USA, 1995).

    Google Scholar 

  17. T. Sasao, “FPGA design by generalized functional decomposition,” in Representations of Discrete Functions, Ed. by T. Sasao and M. Fujita (Kluwer Academic, Dordrecht, 1996).

    Chapter  Google Scholar 

  18. M. Fujita, Y. Matsunara, and M. Ciesielski, “Multi-level logic optimization,” in Logic Synthesis and Verification, Ed. by S. Hassoun, T. Sasao, and R. K. Brayton (Kluwer Academic, Dordrecht, 2002).

    Google Scholar 

  19. I. F. Cheburakhin and V. I. Tsurkov, “Syntheses discrete logical device information handling on base of the theories agent,” Mekhatron., Avtomatiz., Upravl., No. 3, 27–34 (2011).

    Google Scholar 

  20. I. F. Cheburakhin and V. I. Tsurkov, “Special relational database for optimization and automations of the syntheses combinational automaton,” Mekhatron., Avtomatiz., Upravl., No. 9, 7–13 (2010).

    MathSciNet  Google Scholar 

  21. P. N. Bibilo and V. I. Romanov, Logical Design of Discrete Devices with the Use of Production-Frame Model of Knowledge Representation (Belarus. navuka, Minsk, 2011).[in Russian].

    Google Scholar 

  22. I. F. Cheburakhin and V. I. Tsurkov, “Optimization and automation of synthesis of symmetric combinational automatic devices on the basis of base matrix crystals,” Mekhatron., Avtomatiz., Upravl., No. 7, 19–29 (2009).

    Google Scholar 

  23. I. F. Cheburakhin and V. I. Tsurkov, “Logic control and processing of the information in mechatronics systems,” Mekhatron., Avtomatiz., Upravl., No. 5, 33–37 (2010).

    Google Scholar 

  24. A. S. Taghavi and Yu. V. Pottosin, “Improved decomposition for a system of completely specified Boolean functions,” Int. J. Inform. Technol. Comput. Sci. 6, 25–32 (2013).

    Google Scholar 

  25. K. R. Brayton, G. D. Hactel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli, Logic Minimization Algorithm for VLSI Synthesis (Kluwer Academic, Dordrecht, 1984).

    Book  MATH  Google Scholar 

  26. A. S. Kh. Tagavi and Yu. V. Pottosin, “Study of separability properties of Boolean function systems,” Informatika, No. 4 (2013).

  27. P. N. Bibilo and P. V. Leonchik, “An algorithm for constructing diagrams of binary choice for the system of completely specified Boolean functions,” Upravl. Sist. Mashiny, No. 6 (2009).

  28. C. Jeong, “Computer-aided design of digital systems,” Department of Computer Science. http://www1. cscolumbiaedu/~cs6861/sis/espresso-examples/ex.

  29. P. N. Bibilo and N. A. Kirienko, “Estimating energy consumption in logical CMOS circuits based on their switching activity,” Russ. Microelectron. 41, 59 (2012).

    Article  Google Scholar 

  30. A. Lokhov, “VLSI functional verification in light of Mentor Graphics,” Elektron.: Nauka, Tekhnol., Biznes, No. 1 (2004).

  31. N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary decision diagrams based on exchanges of variables,” in Proceedings of the IEEE International Conference on Computer-Aided Design ICCAD-1991 (Santa Clara, CA, USA, 1991).

    Google Scholar 

  32. P. N. Bibilo, Application of Binary Choice Diagrams during Logic Circuits Synthesis (Belarus. Navuka, Minsk, 2014).[in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Bibilo.

Additional information

Original Russian Text © N.A. Avdeev, P.N. Bibilo, 2016, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2016, No. 2, pp. 29–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, N.A., Bibilo, P.N. Experimental comparison of decomposition methods for systems of Boolean function. J. Comput. Syst. Sci. Int. 55, 189–210 (2016). https://doi.org/10.1134/S1064230716010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230716010044

Keywords

Navigation