Skip to main content
Log in

Pole placement for controlling a large scale power system

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose an efficient approach to pole placement for the problem of centralized control over a large scale power system with state feedback. Our approach is based on a specific homothetic transformation of the original system representation. The representation of a transformed system contains explicit elements that can be changed with feedback and provide for a given pole placement in the closed system. We give examples of solving the exact pole placement problem in systems whose state space dimension reaches several thousands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P.M. and Fouad, A.A., Power System Control and Stability, Iowa: Iowa State Univ. Press, 1977. Translated under the title Upravlenie energosistemami i ustoichivost’, Moscow: Energiya, 1980.

    Google Scholar 

  2. Barinov, V.A. and Sovalov, S.A., Rezhimy energosistem: metody analiza i upravleniya (Modes of Power Systems: Analysis and Control Methods), Moscow: Energoatomizdat, 1990.

    Google Scholar 

  3. Kundur, P., Power System Stability and Control, New York: McGraw-Hill, 1994.

    Google Scholar 

  4. Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Oscillation Theory), Moscow: Nauka, 1981.

    Google Scholar 

  5. Kurov, V.F., Nekotorye voprosy analiza ustoichivosti statsionarnogo rezhima slozhnoi elektricheskoi sistemy. Lektsii dlya studentov i aspirantov (Some Problems of Stability Analysis for a Stationary Mode of a Large Scale Electric System), Novosibirsk: NETI, 1965.

    Google Scholar 

  6. Misrikhanov, M.Sh. and Ryabchenko, V.N., The Quadratic Eigenvalue Problem in Electric Power Systems, Autom. Remote Control, 2006, vol. 67,no. 5, pp. 698–720.

    Article  MathSciNet  MATH  Google Scholar 

  7. Misrikhanov, M.Sh. and Ryabchenko, V.N., Randomized Algorithms for Computing Invariant Zeros of Large Scale Dynamical Systems, in Stokhasticheskaya optimizatsiya v informatike (Stochastic Optimization in Informatics), St. Petersburg: S.-Peterburg. Gos. Univ., 2008, no. 4, pp. 48–60.

    Google Scholar 

  8. Siljak, D.D., Large-Scale Dynamic Systems: Stability and Structure, New York: North-Holland, 2001.

    Google Scholar 

  9. Xue, Z.Y., Fang, D.Z., and Yang, J.G., Dynamic Simulation of Large-Scale Power Systems Using a Two-Level Computation Tree Model, Int. J. Emerging Electric Power Syst., 2010, vol. 11,no. 5, article 1.

  10. Soerensen, P. and Hansen, A.D., Pedro Andre Carvalho Rosas, Wind Models for Prediction of Power Fluctuations of Wind Farms, J. Wind Eng. Ind. Aerodyn., 2002, no. 90, pp. 1381–1402.

  11. Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob’ektami (Controlling Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.

    Google Scholar 

  12. Afanas’ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Mathematical Theory of Control Systems Design), Moscow: Vysshaya Shkola, 1998.

    Google Scholar 

  13. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Synthesizing Control Laws Based on Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.

    Google Scholar 

  14. Dorf, R.C. and Bishop, R.H., Modern Control Systems, Upper Saddle River: Prentice Hall, 2007, 11th ed. Translated under the title Sovremennye sistemy upravleniya, Moscow: Lab. Bazovykh Znanii, 2002.

    Google Scholar 

  15. Kuo, B.C., Digital Control Systems, Oxford: Oxford University Press, 1995, 2nd ed. Translated under the title Teoriya i proektirovanie tsifrovykh sistem upravleniya, Moscow: Mashinostroenie, 1986.

    Google Scholar 

  16. Leonov, G.A. and Shumafov, M.M., Metody stabilizatsii lineinykh upravlyaemykh sistem (Stabilization Methods for Linear Controllable Systems), St. Petersburg: S.-Peterburg. Gos. Univ., 2005.

    Google Scholar 

  17. Misrikhanov, M.Sh., Invariantnoe upravlenie mnogomernymi sistemami. Algebraicheskii podkhod (Invariant Control for Multidimensional Systems. An Algebraic Approach), Moscow: Nauka, 2007.

    Google Scholar 

  18. Misrikhanov, M.Sh. and Ryabchenko, V.N., Modal Synthesis for Power System Control Based on the Generalized Ackermann Formula, in Avtomatika 2008: Proc. XV Int. Conf. on Automated Control, Odessa: ONMA, 2008, vol. 1, pp. 362–365.

    Google Scholar 

  19. Misrikhanov, M.Sh. and Ryabchenko, V.N., The Band Formula for A.N. Krylov’s Problem, Autom. Remote Control, 2007, vol. 68,no. 12, pp. 2142–2157.

    Article  MathSciNet  MATH  Google Scholar 

  20. Misrikhanov, M.Sh. and Ryabchenko, V.N., Analysis and Synthesis of Linear Dynamical Systems Based on Tape Formulas, Vestn. IGEU, 2005, no. 5, pp. 243–248.

  21. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  22. Podchukaev, V.A., Teoriya avtomaticheskogo upravleniya (analiticheskie metody) (Automated Control Theory (Analytic Approaches)), Moscow: Fizmatlit, 2005.

    Google Scholar 

  23. Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1985. Translated under the title Lineinye mnogomernye sistemy upravleniya: Geometricheskii podkhod, Moscow: Nauka, 1980.

    MATH  Google Scholar 

  24. Kailath, T., Linear Systems, Englewood Cliffs: Prentice Hall, 1980.

    MATH  Google Scholar 

  25. Kautsky, J., Nichols, N.K., and Van Dooren, P., Robust Pole Assignment in Linear State Feedback, Int. J. Control, 1985, vol. 41,no. 5, pp. 1129–1155.

    Article  MATH  Google Scholar 

  26. Balas, M.J., Trends in Space Large Structure Control Theory: Fondest Hopes, Wildest Dreams, IEEE Trans. Automat. Control, 1982, vol. 27, pp. 522–535.

    Article  MATH  Google Scholar 

  27. Rao, X., Gallivan, K., and Van Dooren, P., Efficient Stabilization of Large Scale Dynamical Systems, Proc. IEEE Conf. Comp. Aided Contr. Syst. Design, 2000, CD-ROM.

  28. Antoulas, A.C., Approximation of Large Scale Dynamical Systems, Philadelphia: SIAM, 2005.

    Book  MATH  Google Scholar 

  29. Vandendorpe, A., Gallivan, K., and Van Dooren, P., On the Generality of Multipoint Pade Approximation, Proc. 15 IFAC World Congr., 2002, CD-ROM.

  30. Vandendorpe, A., Gallivan, K., and Van Dooren, P., Model Reduction of MIMO Systems via Tangential Interpolation, SIAM J. Matrix Anal. Appl., 2004, vol. 26, no. 2, pp. 328–349.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1988, 4th ed. Translated under the title The Theory of Matrices, New York: Chelsea, 1959.

    MATH  Google Scholar 

  32. Skelton, R.E., Iwasaki, T., and Grigoriadis, K., A Unified Algebraic Approach to Linear Control Design, London: Taylor and Francis, 1998.

    Google Scholar 

  33. Alexandridis, A.T. and Galanos, G.D., Optimal Pole-Placement for Linear Multi-Input Controllable Systems, IEEE Trans. Circuits Syst., 1987, vol. CAS-34, pp. 1602–1604.

    Article  Google Scholar 

  34. Datta, B.N., Ram, Y.N., and Sarcissian, D.R., Multi Input Partial Pole Placement for Distributed Gyroscopic Systems, Proc. CDC, 2001, CD-ROM.

  35. Iracleous, D.P. and Alexandridis, F.T., A Simple Solution to the Optimal Eigenvalue Assignment Problem, IEEE Trans. Automat. Control, 1999, vol. 44, no. 9, pp. 1746–1749.

    Article  MathSciNet  MATH  Google Scholar 

  36. Sugimoto, K., Inoue, A., and Masuda, S., A Direct Computation of State Deadbeat Feedback Gains, IEEE Trans. Automat. Control, 1993, vol. 38,no. 8, pp. 1283–1284.

    Article  MathSciNet  MATH  Google Scholar 

  37. Golub, G.H. and van Loan, C.F., Matrix Computations, Baltimore: John Hopkins Univ. Press, 1996, 3rd ed. Translated under the title Matrichnye vychisleniya, Moscow: Mir, 1999.

    MATH  Google Scholar 

  38. Magnus, J.R. and Neudecker, H., Matrix Differential Calculus with Applications in Statistics and Econometrics, New York: Wiley, 1999. Translated under the title Matrichnoe differentsial’noe ischislenie s prilozheniyami k statistike i ekonometrike, Moscow: Fizmatlit, 2002.

    MATH  Google Scholar 

  39. Misrikhanov, M.Sh. and Ryabchenko, V.N., Algebraic and Matrix Methods in the Theory of Linear MIMO Systems, Vestnik IGEU, 2005, no. 5, pp. 196–240.

  40. Yokoyama, R., General Structure of Linear Multi-Input Multi-Output Systems, Technol. Report Iwate Univ., 1972, pp. 13–30.

  41. Misrikhanov, M.Sh. and Ryabchenko, V.N., Reduction of the Rosenbrock Matrix in Analysis of Invariant Zeros of the Linear MIMO-System, Autom. Remote Control, 2008, vol. 69, no. 10, pp. 1675–1691.

    Article  MathSciNet  MATH  Google Scholar 

  42. Alag, G. and Kaufman, H., An Implementable Digital Adaptive Flight Controller Designed Using Stabilized Single-Stage Algorithms, IEEE Trans. Automat. Control, 1977, vol. 22, no. 5, pp. 780–788.

    Article  Google Scholar 

  43. Granichin, O.N. and Polyak, B.T., Randomizirovannye algoritmy otsenivaniya i optimizatsii pri pochti proizvol’nykh pomekhakh (Randomized Estimation and Optimization Algorithms for Nearly Arbitrary Noise), Moscow: Nauka, 2003.

    Google Scholar 

  44. Girko, V.L., Circular Law, Theor. Prob. Appl., 1984, no. 29, pp. 694–706.

  45. Misrikhanov, M.Sh. and Ryabchenko, V.N., Pole Placement in Large Scale Systems, Available from http://lab7.ipuru:8081/rus/seminars.asp.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.Sh. Misrikhanov, V.N. Ryabchenko, 2011, published in Avtomatika i Telemekhanika, 2011, No. 10, pp. 129–153.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misrikhanov, M.S., Ryabchenko, V.N. Pole placement for controlling a large scale power system. Autom Remote Control 72, 2123–2146 (2011). https://doi.org/10.1134/S0005117911100110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117911100110

Keywords

Navigation