Skip to main content
Log in

Stabilization of Linear Control Systems and Pole Assignment Problem: A Survey

  • TO THE MEMORY OF G.A. LEONOV
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

This paper reviews the problems of stabilization and pole assignment in the control of linear time-invariant systems using the static state and output feedback. The main results are presented, along with a literature review. Stationary and nonstationary stabilizations with the static feedback are considered. The algorithms of low- and high-frequency stabilization of linear systems for solving Brockett’s stabilization problem are provided. The effective necessary and sufficient conditions for stabilization of two- and three-dimensional controllable linear systems are given in terms of the system parameters. The pole assignment problem and the related issues for linear systems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. S. Bernstein, “Some open problems in matrix theory arising in linear systems and control,” Linear Algebra Appl. 162–164, 409–432 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Blondel, M. Gevers, and A. Lindquist, “Survey on the state of the systems and control,” Eur. J. Contol 1, 5–23 (1995).

    Article  MATH  Google Scholar 

  3. V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, “Static output feedback. A survey,” Automatica 33, 125–137 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. Open Problems in Mathematical Systems and Control Theory, ed. by V. D. Blondel, E. D. Sontag, M. Vidyasagar, and J. C.Willems (Springer-Verlag, London, 1999).

    Google Scholar 

  5. B. T. Polyak and P. S. Shcherbakov, “Hard problems in linear control theory: Possible approaches to solution,” Autom. Remote Control 66, 681–718 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Brockett, “A stabilization problem,” in Open Problems in Mathematical Systems and Control Theory (Springer-Verlag, London, 1999).

    Google Scholar 

  7. G. A. Leonov, “Brockett’s problem in the theory of stability of linear differential equations,” St. Petersburg Math. J. 13, 613–628 (2001).

    MathSciNet  Google Scholar 

  8. G. A. Leonov, “The Brockett stabilization problem,” Autom. Remote Control 62, 847–849 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. A. Leonov, “The Brockett problem in the theory of nonstationary stabilization of linear differential equations,” Am. Math. Soc. Transl. 205, 163–173 (2002).

    MATH  Google Scholar 

  10. G. A. Leonov, “The Brockett problem for linear discrete control systems,” Autom. Remote Control 63, 777–781 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. A. Leonov and M. M. Shumafov, Problems of Stabilization of Linear Controllable Systems (S.-Peterb. Gos. Univ., St. Petersburg, 2002) [in Russian].

    MATH  Google Scholar 

  12. L. Moreau and D. Aeyels, “Stabilization by means of periodic output feedback,” in Proc. 38th IEEE Conf. on Decision and Control (CDC), Phoenix, AZ, Dec. 7–10,1999 (IEEE, Piscataway, NJ, 1999), pp. 108–109.

  13. L. Moreau and D. Aeyels, “A note on stabilization by periodic output feedback for third-order systems,” in Proc. 14th Int. Symp. on Mathematical Theory of Networks and Systems (MTNS), Perpignan, France, June 19–23, 2000 (Univ. de Perpignan, Perpignan, 2000).

  14. L. Moreau and D. Aeyels, “Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree,” Syst. Control Lett. 51, 395–406 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. I. V. Boikov, “The Brockett stabilization problem,” Autom. Remote Control 66, 746–751 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. V. Boikov, “The Brockett stabilization problem for the system of nonlinear differential equations with delay,” Izv. Vyssh. Uchebn, Zaved., Povolzhskii Region, Fiz.-Mat. Nauki, No. 4, 3–13 (2011).

    Google Scholar 

  17. T. Insperger and G. Stepan, “Brockett problem for systems with feedback delay,” in Proc. 17th World Congr. of the Int. Fed. of Aut. Control (IFAC), Seoul, July 6–11,2008, pp. 11491–11496.

    Article  Google Scholar 

  18. V. I. Zubov, Theory of Optimal Control (Sudostroenie, Leningrad, 1966) [in Russian].

    Google Scholar 

  19. W. M. Wonham, “On pole assignment in multi-input controllable linear systems,” IEEE Trans. Autom. Control 12, 660–665 (1967).

    Article  Google Scholar 

  20. M. L. J. Hautus, “Controllability and observability conditions of linear autonomous systems,” Nedert. Acad. Wetensch. Proc. Ser. A 72, 443–448 (1969).

    MathSciNet  MATH  Google Scholar 

  21. T. Kailath, Linear Systems (Prentice-Hall, Englewood Cliffs, NJ, 1980).

    MATH  Google Scholar 

  22. R. E. Kalman, “Contribution to the theory of optimal theory,” Bol. Soc. Mat. Mexicana 5, 102–119 (1960).

    MathSciNet  Google Scholar 

  23. H. Kwakernaak and R. Sivan, Linear Optimal Control (Wiley, New York, 1972).

    MATH  Google Scholar 

  24. P. A. Kuzmin, Small Oscillations and Stability of Motion (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  25. U. Helmke and B. Anderson, “Hermitian pencils and output feedback stabilization of scalar systems,” Int. J. Control 56, 857–876 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Perez, C. Abdallah, P. Dorato, and D. Docambo, “Algebraic tests for output stabilizability,” in Proc. 32nd IEEE Conf. on Decision and Control, San Antonio, TX, Dec. 15–17,1993 (IEEE, New York, 1993), pp. 2385–2386.

  27. V. Kucera and C. Souza, “A necessary and sufficient condition for output feedback stabilizability,” Automatica 31, 1357–1359 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. A. Yakubovich, G. A. Leonov, and A. Kh. Gelig, Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities (Nauka, Moscow, 1978; World Sci., Singapore, 2004).

  29. A. Trofino-Neto and V. Kucera, “Stabilization via static output feedback,” IEEE Trans. Autom. Control 38, 764–765 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Y. Cao, Y.-X. Sun, and W.-J. Mao, “A new necessary and sufficient condition for static output feedback stabilizability and comments on "Stabilization via static output feedback”,” IEEE Trans. Autom. Control 43, 1110–1112 (1998).

    Article  MATH  Google Scholar 

  31. T. Iwasaki and R. Skelton, “Parametrization of all stabilizing controllers via quadratic Lyapunov functions,” J. Optim. Theory Appl. 77, 291–307 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  32. L. El-Chaoui and P. Gahinet, “Rank minimization under LMI constraints: A framework for output feedback problems,” in Proc. Eur. Control Conf., Groningen,1993, pp. 1176–1179.

  33. E. Davison, “An automatic way of finding optional control systems for large multi-variable plants,” in Proc. IFAC Tokyo Symp. Control1965, pp. 357–373.

  34. B. Anderson, N. Bose, and E. Jury, “Output feedback stabilization and related problems — Solution via decision methods,” IEEE Trans. Autom. Control 20, 53–65 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  35. B. D. O. Anderson and J. C. Clements, “Algebraic characterization of fixed modes in decentralized control,” Automatica 17, 703–712 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  36. C. I. Byrnes and B. D. O. Anderson, “Output feedback and generic stabilizability,” SIAM J. Control Optim. 11, 362–380 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  37. B. D. O. Anderson and R. W. Scott, “Output feedback stabilization — Solution by algebraic geometry methods,” Proc. IEEE 65, 849–861 (1977).

    Article  Google Scholar 

  38. J.-W. Wu, K.-Y. Lian, and P. Lancaster, “A stabilization criterion for matrices,” Linear Algebra Appl. 422, 22–28 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Crauel, T. Damm, and A. Ilchmann, “Stabilization of linear systems by rotation,” J. Differ. Equations 234, 412–438 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  40. S. M. Meerkov, “Vibrational control,” Autom. Remote Control 34, 201–209 (1973).

    MathSciNet  MATH  Google Scholar 

  41. S. M. Meerkov, “Vibrational control theory,” J. Franklin Inst. 3, 117–128 (1977).

    Article  MATH  Google Scholar 

  42. E. Tamaseviciute and A. Tamasevicius, “Stabilizing uncertain steady states of some dynamical systems by means of proportional feedback,” Nonlinear Anal.: Model. Control 18, 86–98 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Blondel, Simultaneous Stabilization of Linear Systems (Springer-Verlag, London, 1994).

    Book  MATH  Google Scholar 

  44. C. Nett, D. Bernstein, and W. Haddad, “Minimal complexity control law synthesis. Pt. 1: Problem formulation and reduction to optimal static output feedback,” in Proc. Am. Control Conf. (ACC), Pittsburg, PA, June 21–23, 1989 (IEEE, Piscataway, NJ), pp. 2056–2064 (1989).

  45. B. Martensson, “The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization,” Syst. Control Lett. 6, 87–91 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  46. V. I. Arnol’d, Ordinary Differential Equations, 3rd ed. (Nauka, Moscow, 1971; Springer-Verlag, 1991).

  47. A. Stephenson, “A new type of dynamical stability,” Mem. Proc. Manchr. Cit. Phil. Soc. 52, 1907–1908 (1908).

    Google Scholar 

  48. P. L. Kapitsa, “Dynamical stability of pendulum under oscillating suspension point,” Zh. Eksp. Teor. Fiz. 21, 588–598 (1951).

    MathSciNet  Google Scholar 

  49. A. G. Leonov and M. M. Shumafov, Methods of Stabilization of Linear Controllable Systems (S.-Peterb. Gos. Univ., St. Petersburg, 2005) [in Russian].

    MATH  Google Scholar 

  50. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory (McGraw Hill, New York, 1969; Mir, Moscow, 1971).

  51. J. Rissanen, “Control system synthesis by analogue computer based on the "generalized linear feedback control” concept,” in Proc. Int. Seminar Analogue Computation Applied to the Study of Chemical Processes, Brussels, Nov. 21–23,1960 (Gordon & Breach, New York, 1961), pp. 1–13.

  52. H. H. Rosenbrock, “Distinctive processes in process control,” Chem. End. Prog. 58, 43–50 (1962).

    Google Scholar 

  53. R. E. Kalman, “Ljapunov Functions for the problem of Lur’e in Automatic Control,” in Proc. Natl. Acad. Sci. U. S. A. 49, 201–205 (1963).

    Article  MATH  Google Scholar 

  54. V. M. Popov, “Hyperstability and optimality of automatic systems with several control functions,” Rev. Roum. Sci. Tech. Ser. Electrotech. Energ. 9, 629–690 (1964).

    MathSciNet  Google Scholar 

  55. C. E. Langenhop, “On the stabilization of linear systems,” in Proc. Am. Math. Soc. 15, 735–742 (1964).

    Article  MATH  Google Scholar 

  56. J. D. Simon and S. K. Mitter, “A theory of modal control,” Inf. Control 13, 316–353 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Brunovsky, “A classification of linear controllable systems,” Kybernetika 6, 173–187 (1970).

    MathSciNet  MATH  Google Scholar 

  58. C. T. Chen, “A note on pole assignment,” IEEE Trans. Autom. Control 12, 597–598 (1968).

    Article  Google Scholar 

  59. E. J. Davison, “On pole assignment in multivariable linear systems,” IEEE Trans. Autom. Control 13, 747–748 (1968).

    Article  Google Scholar 

  60. M. Heymann, “Comments "On pole assignment in multi-input controllable linear systems”,” IEEE Trans. Autom. Control 13, 748–749 (1968).

    Article  MathSciNet  Google Scholar 

  61. Yu. N. Andreev, Control of Finite-Dimensional Linear Objects (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  62. W. M. Wonham, Linear Multivariable Control: A Geometric Approach (Springer-Verlag, New York, 1979).

    Book  MATH  Google Scholar 

  63. E. Ya. Smirnov, The Stabilization of Program Motions (S.-Peterb. Gos. Univ., St. Petersburg, 1977) [in Russian].

    Google Scholar 

  64. G. S. Aksenov, “On the problem of stabilization of the linear object of control,” Vestn. Leningr. Gos. Univ., No. 7, 5–8 (1977).

  65. G. A. Leonov and M. M. Shumafov, “Elementary proof of the theorem on stabilizability of linear controllable systems,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 56–68 (2003).

  66. G. A. Leonov and M. M. Shumafov, “Algorithm of step-by-step stabilization of linear object of control,” Izvest. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki, No. 2, 14–19 (2005).

    Google Scholar 

  67. R. T. Kabamba, S. M. Meerkov, and E. K. Roh, “Pole placement capabilities of vibrational control,” IEEE Trans. Autom. Control 43, 1256–1261 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  68. E. J. Davison, “On pole assignment in linear systems with incomplete state feedback,” IEEE Trans. Autom. Control 15, 348–351 (1970).

    Article  MathSciNet  Google Scholar 

  69. E. J. Davison and R. Chatterjee, “A note on pole assignment in linear systems with incomplete state feedback,” IEEE Trans. Autom. Control 16, 98–99 (1971).

    Article  MathSciNet  Google Scholar 

  70. E. J. Davison, “An algorithm for the assignment of closed-loop poles using output feedback in large multivariable systems,” IEEE Trans. Autom. Control 18, 74–75 (1973).

    Article  MATH  Google Scholar 

  71. B. Sridhar and D. P. Lindorff, “Pole placement with constant gain output feedback,” Int. J. Control 18, 993–1003 (1973).

    Article  MATH  Google Scholar 

  72. A. Jameson, “Design of a single-input system for specified roots using output feedback,” IEEE Trans. Autom. Control 15, 345–348 (1970).

    Article  MathSciNet  Google Scholar 

  73. A. K. Nandi and J. H. Herzog, “Comments on design of a single-input system for specified roots using output feedback,” IEEE Trans. Autom. Control 16, 384–385 (1971).

    Article  Google Scholar 

  74. E. J. Davison and S. H. Wang, “On pole assignment in linear multivariable systems using output feedback,” IEEE Trans. Autom. Control 20, 516–518 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  75. H. Kimura, “On pole assignment by output feedback,” Int. J. Control 28, 11–22 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Brockett and C. Byrnes, “Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint,” IEEE Trans. Autom. Control 26, 271–284 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Schumacher, “Compensator synthesis using (C,A,B)-pairs,” IEEE Trans. Autom. Control 25, 1133–1138 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  78. X. Wang, “Pole placement by static output feedback,” Math. Syst., Estim. Control 2, 205–218 (1992).

    MathSciNet  Google Scholar 

  79. J. Leventides and N. Karcanias, Arbitrary Pole Placement via Low Order Dynamic Output Feedback Controllers: A Solution in Closed Form, Technical Report CEC/EL-NK/135 (City University, London, 1995).

  80. J. Rosenthal, J. M. Schumacher, and J. C. Willems, “Generic eigenvalue assignment by memoryless real output feedback,” Syst. Control Lett. 26, 253–260 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  81. J. C. Willems, “Generic eigenvalue assignability by real memoryless output feedback made simple,” in Communications, Computation, Control and Signal Processing (Springer-Verlag, New York, 1997), pp. 343–354.

    Google Scholar 

  82. G. A. Leonov and M. M. Shumafov, Stabilization of Linear Systems (Cambridge Sci. Publ., Cambridge, 2012).

    MATH  Google Scholar 

  83. R. Hermann and C. Martin, “Applications of algebraic geometry to systems theory: Part 1,” IEEE Trans. Autom. Control 22, 19–25 (1977).

    Article  MATH  Google Scholar 

  84. J. C. Willems and W. H. Hesselink, “Generic properties of the pole placement problem,” in Proc. 7th IFAC Congr., Helsinki, Finland, June 12–16,1978 (Pergamon, Oxford, 1979), pp. 1725–1729.

    Article  Google Scholar 

  85. A. N. Andry, E. Y. Shapiro, and J. C. Chung, “Eigenstructure assignment for linear systems,” IEEE Trans. Aerosp. Electron. Syst. 19, 711–728 (1983).

    Article  Google Scholar 

  86. H. H. Rosenbrock, State Space and Multivariable Theory (Wiley, New York, 1970).

    MATH  Google Scholar 

  87. R. E. Kalman, “Kronecker invariants and feedback,” in Ordinary Differential Equations, Ed. by L. Weiss (Academic, New York, 1972), pp. 452–471.

    Google Scholar 

  88. B. C. Moore, “On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment,” IEEE Trans. Autom. Control 21, 689–692 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  89. S. Srinathkumar, Eigenvalues/Eigenvector Assignment Using Outback Feedback (NASA, 1978).

    MATH  Google Scholar 

  90. J. Kautsky, N. K. Nichols, and P. Van Dooren, “Robust pole assignment in linear state feedback,” J. Control 41, 1129–1155 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  91. V. A. Zaitsev, “Modal control of the linear differential equation with incomplete feedback,” Differ. Uravnen. 39, 133–135 (2003).

    MathSciNet  Google Scholar 

  92. V. A. Zaitsev, “On controlling the spectrum and stabilization of bilinear,” Vestn. Udmurt. Univ., Mat., Mekh., Comput. Nauki 2, 49–51 (2008).

    Google Scholar 

  93. V. A. Zaytsev, “Spectrum control in linear systems with incomplete feedback,” Differ. Uravn. 45, 1320–1328 (2009).

    Google Scholar 

  94. V. A. Zaitsev, “The spectrum control in bilinear systems,” Differ. Uravn. 46, 1061–1064 (2010).

    Google Scholar 

  95. V. A. Zaitsev, “Necessary and sufficient conditions of the spectrum control problem,” Differ. Uravn. 46, 1789–1793 (2010).

    MathSciNet  MATH  Google Scholar 

  96. K. Yang and R. Orsi, “Generalized pole placement via based on projections,” Automatica 42, 2143–2150 (2006).

    Article  MATH  Google Scholar 

  97. M. Sh. Misrikhanov and V. N. Ryabchenko, “Pole placement for controlling a large scale power system,” Autom. Remote Control 72, 2123–2146 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  98. R. Schmid, L. Ntogramatzidis, T. Ngyen, and A. Pandey, “A unified method for optimal arbitrary placement,” Automatica 50, 2150–2154 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  99. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Controlling the finite eigenvalues of the descriptor system,” Dokl. Akad. Nauk 460, 381–384 (2015).

    Google Scholar 

  100. F. R. Gantmakher, Matrix Theory (Nauka, Moscow, 1962; Chelsea, New York, 1959).

  101. V. Ye. Belozyorov, “New solution method of linear static output feedback design problem for linear control systems,” Linear Algebra Appl. 54, 204–227 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  102. M. E. Mostafa El-Sayed, M. A. Tawhid, and E. R. Elwan, “Nonlinear conjugate gradient methods for the output feedback pole assignment problem,” Pac. J. Optim. 12, 55–85 (2016).

    MathSciNet  MATH  Google Scholar 

  103. A. G. Yannakoudacis, “The static output feedback from the invariant point of view,” IMA J. Math. Control Inf. 33, 639–669 (2016).

    Article  MathSciNet  Google Scholar 

  104. V. A. Zaitsev and I. G. Kim, “Pole assignment a finite spectrum in linear systems with delay in state by static feedback,” Vestn. Udmurt. Univ., Mat., Mekh., Comput. Nauki 26, 463–473 (2016).

    Google Scholar 

  105. V. A. Zaitsev and I. G. Kim, “Pole assignment an arbitrary spectrum in linear stationary systems with commensurable delays in state by static feedback,” Vestn. Udmurt. Univ., Mat., Mekh., Comput. Nauki 27, 315–325 (2017).

    Google Scholar 

  106. G. A. Leonov, M. M. Shumafov, and N. V. Kuznetsov, “A short survey of delayed feedback stabilization,” in 1st IFAC Conf. on Modeling, Identification and Control of Nonlinear Systems, St. Petersburg, June 24–26,2015 (Curran, Red Hook, New York, 2016), pp. 716–719.

  107. K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Phys. Lett. A 170, 421–428 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Shumafov.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumafov, M.M. Stabilization of Linear Control Systems and Pole Assignment Problem: A Survey. Vestnik St.Petersb. Univ.Math. 52, 349–367 (2019). https://doi.org/10.1134/S1063454119040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454119040095

Keywords:

Navigation