Skip to main content
Log in

Decomposition of Hydrocarbon Gases using a Novel Bioelectrochemical-Based Composite Biofilter

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Activated carbon filters installed in existing air cleaners only adsorb harmful gases, such as hydrocarbon gases, without fundamentally decomposing them. Therefore, there is a great concern that the harmful gases may be re-released into the atmosphere according to changes in environmental factors; moreover, when the fixation capacity of the carbon filter reaches its limit, harmful gases might no longer be captured by the filter. To overcome the abovementioned problems of activated carbon filters, in this study, we devised a new concept for a composite filter system (bioelectrochemical-based composite biofilter consisting of living microorganisms, a complex graphite felt filter with working and counter electrodes, and an electrochemical reducing power supply system) capable of inducing the complete decomposition of harmful gases. The composite biofilter was made of graphite felt for high conductivity and modified with chitosan and phosphate to increase the moisture content. In addition, it can supply electrochemical reducing power to accelerate the metabolism of microorganisms that comprise a part of the composite filter; these microbes can completely decompose the harmful gases, which act as carbon sources derived from the environment through metabolic processes. Based on the performance of this composite biofilter, the newly developed microbe-carrying bioelectrochemical-based composite biofilter effectively decomposed 50% (2000 ppm) of the harmful gases (lower hydrocarbons), including methane, propane, and butane, within 3 days. Unlike the limited use of conventional biological filters, this strongly suggests that the above microbe-carrying bioelectrochemical-based composite biofilter can be actively utilized as a new alternative air-cleaning filter for full-scale detoxification of harmful toxic gases, even under general indoor atmospheric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Dang, C., Xie, J., Lie, B., Xing, D., Ding, J., and Ren, N., J. Hazard Mater., 2021, vol. 405, p. 24076.

    Article  Google Scholar 

  2. Lam, C.-W., James, J.T., McCluskey, R., Arepalli, S., and Hunter, R.L., Crit. Rev. Toxicol., 2006, vol. 36, pp.189–217.

    Article  CAS  PubMed  Google Scholar 

  3. Vahabzadeh, M. and Mégarbane, B., Basic Clin. Pharmacol. Toxicol., 2022, vol. 131, no. 3, pp. 155–164.

    Article  CAS  PubMed  Google Scholar 

  4. McKee, R.H., Herron, D., Saperstein, M., Podhasky, P., Hoffman, G.M., and Roberts, L., Int. J. Toxicol., 2014, vol. 33, suppl. 1, pp. 28S–51S.

    Article  CAS  PubMed  Google Scholar 

  5. Kwon, H.J., Yang, D.S., Koo, M.S., Ji, S.M., Jeong, J., Oh, S. et al., Nat. Commun., 2023, vol. 14, p. 520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ajayi, F.F. and Weigele, P.R., Bioresour. Technol., 2012, vol. 116, pp. 86–91.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, M.-K., Jang, Y., and Park, D., Int. J. Environ. Res. Public Health, 2020, vol. 17, p. 8230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sublett, J.L., Curr. Allergy Asthma Rep., 2011, vol. 11, pp. 395–402.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ma, H., Shen, H., Shui, T., Li, Q., and Zhou, L., Int. J. Environ. Res. Public Health, 2016, vol. 13, p. 102.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kennelly, C., Clifford, E., Gerrity, S., Walsh, R., Rodgers, M., and Collins, G., Water Sci. Technol., 2021, vol. 66, no. 9, pp. 1997–2006.

    Article  Google Scholar 

  11. Bu, H., Carvalho, G., Yuan, Z., Bond, P., and Jiang, G., Chemosphere, 2021, vol. 277, p. 130333.

    Article  CAS  PubMed  Google Scholar 

  12. Martin, K.J. and Nerenberg, R., Bioresour. Technol., 2012, vol. 122, pp. 83–94.

    Article  CAS  PubMed  Google Scholar 

  13. Vitko, T.G., Cowden, S., and Suffet, I.H.M., Water Res., 2022, vol. 220, p. 118691.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G., and Xi, J., Trends Biotechnol., 2018, vol. 36, no. 7, pp. 673–685.

    Article  CAS  PubMed  Google Scholar 

  15. Li, P., Li, J., Feng, X., Li, J., Hao, Y., Zhang, J., et al., Nat. Commun., 2019, vol. 10, p. 2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, H., Zheng, Y., Liu, J., Zhu, B., Qin, W., and Zhao, F., Biosens. Bioelectron., 2022, vol. 215, p. 114584.

    Article  CAS  PubMed  Google Scholar 

  17. Chai, F., Li, L., Xue, S., Xie, F., and Liu, J., Sci. Total Environ., 2021, vol. 799, p. 149334.

    Article  CAS  PubMed  Google Scholar 

  18. Park, D.H. and Zeikus, J.G., J. Bacteriol., 1999, vol. 181, pp. 2403–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeon, B.Y., Kim, S.Y., Park, Y.K., and Park, D.H., J. Microbiol. Biotechnol., 2009, pp. 1665–1671.

  20. Hwang, T.S., Na, B.K., Tran, H.T., Ahn, D.H., and Park, D.H., Biotechnol. Bioprocess Eng., 2008, vol. 13, pp. 677–682.

    Article  CAS  Google Scholar 

  21. Izumi, Y., Oshiro, T., Ogino, H., Hine, Y., and Shimao, M., Appl. Environ. Microbiol., 1994, vol. 60, pp. 223–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirimura, K., Furuya, T., Sato, R., Ishii, Y., Kino, K., and Usami, S., Appl. Environ. Microbiol., 2002, vol. 68, pp. 3867–3872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang, H.S., Na, B.K., and Park, D.H., Biotech. Lett., 2007, vol. 29, pp. 1277–1280.

    Article  CAS  Google Scholar 

  24. Katsuyama, C., Nakaoka, S., Takeuchi, Y., Tago, K., Hayatsu, M., and Kato, K., J. Theor. Biol., 2009, vol. 256, pp. 644–654.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, W.J., Lee, J.K., Chung, J., Cho, Y.-J., and Park, D.H., J. Microbiol. Biotechnol., 2010, vol. 20, pp. 1230–1239.

    Article  CAS  PubMed  Google Scholar 

  26. Kaila, V.R., Wikström, M., and Hummer, G., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 6988–6993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajic, L., Fallahpour, N., Nazari, R., and Alshawabkeh, A.N., Electrochim. Acta, 2015, vol. 181, pp. 123–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reguera, G., Int. Microbiol., 2015, vol. 18, pp. 151–157.

    CAS  PubMed  Google Scholar 

  29. Lee, L.G. and Whitesides, G.M., J. Am. Chem. Soc., 1985, vol. 107, pp. 6999–7008.

    Article  CAS  Google Scholar 

  30. Coria, G., Perez, T., Sires, I., and Nava, J.L., J. Electroanal. Chem., 2015, vol. 757, pp. 225–229.

    Article  CAS  Google Scholar 

  31. Irshad, A., Amiri, S., Ullah, N., Younas, M., and Rezakazemi, M., PLoS One, 2020, vol. 15, p. e0239340.

    Article  Google Scholar 

  32. Morrison, C.S., Paskaleva, E.E., Rios, M.A., Beusse, T.R., Blair, E.M., Lin, L.Q., et al., PLoS One., 2020, vol. 15, p. e0242109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bajpai, M., Cui, H., Wang, X., Lin, C., Xia, S., Hayat, K., et al., Carbohydr. Polym., 2020, vol. 235, p. 115967.

    Article  Google Scholar 

  34. Bajpai, S.K. and Jyotishi, P., Int. J. Biol. Macromol., 2016, vol. 84, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yu, C. and Crump, D., Build. Environ., 1998, vol. 33, no. 6, pp. 357–374.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Korea Environment Industry and Technology Institute (KEITI) through its Ecological Imitation-based Environmental Pollution Management Technology Development Project funded by the Korea Ministry of Environment (MOE) (grant no: 2019002800003, and funded by a grant from the Basic Science Research Program through the National Research Foundation (NRF) (Grant no: NRF-2022R1A2C1091506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Jung.

Ethics declarations

CONFLICT OF INTEREST

As author of this work, I declare that I have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, I.L. Decomposition of Hydrocarbon Gases using a Novel Bioelectrochemical-Based Composite Biofilter. Appl Biochem Microbiol 60, 162–171 (2024). https://doi.org/10.1134/S000368382401006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382401006X

Keywords:

Navigation