Skip to main content
Log in

The Ability of Ascomycetes to Transform Polyethylene Terephthalate

  • ECOLOGY
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The ability of the soil-inhabiting ascomycetes Lecanicillium aphanocladii, Talaromyces sayulitensis, Trichoderma harzianum and Fusarium oxysporum to use polyethylene terephthalate (PET) as a sole carbon and energy source has been shown. Utilization of PET by the studied fungi, except for L. aphanocladii, was accompanied by the production of emulsifying compounds. All fungi exhibited the activity of cutinase, the key PET depolymerization enzyme, and a number of oxidoreductases, which apparently catalyze the oxidation of the resulting products: peroxidases in F. oxysporum and T. harzianum, as well as peroxidases and oxidases in L. aphanocladii and Tal. sayulitensis. The data we obtained can be used to develop environmental biotechnologies and contribute to understanding of the processes of degradation/conversion of plastics in natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kruger, M., Harms, H., and Schlosser, D., Prospects for microbiological solutions to environmental pollution with plastics, Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 8857–8874. https://doi.org/10.1007/s00253-015-6879-4

    Article  CAS  Google Scholar 

  2. Danso, D., Chow, J., and Streit, W., Plastics: Environmental and biotechnological perspectives on microbial degradation, Appl. Environ. Microbiol., 2019, vol. 85, p. e01095-19. https://doi.org/10.1128/aem.01095-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qi, X., Yan, W., Cao, Z., Ding, M., and Yuan, Y., Current advances in the biodegradation and bioconversion of polyethylene terephthalate, Microorganisms, 2022, vol. 10, p. 39. https://doi.org/10.3390/microorganisms10010039

    Article  CAS  Google Scholar 

  4. Soong, Y.-H.V., Sobkowicz, M.J., and Xie, D., Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes, Bioengineering, 2022, vol. 9, p. 98. https://doi.org/10.3390/bioengineering9030098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vert, M., Doi, Y., Hellwich, K.H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., and Schue, F., Terminology for biorelated polymers and applications (IUPAC recommendations 2012), Pure Appl. Chem., 2012, vol. 84, pp. 377–410. https://doi.org/10.1351/PAC-REC-10-12-04

    Article  CAS  Google Scholar 

  6. Arthur, C., Baker, J., and Bamford, H., Proc. Int. Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris, September 9–11, 2008, NOAA Technical Memorandum NOS-OR&R30, US NOAA Marine Debris Division, Silver Spring. 2009.

  7. Tokiwa, Y., Calabia, B., Ugwu, C., and Aiba, S., Biodegradability of plastics, Int. J. Mol. Sci., 2009, vol. 10, pp. 3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muller, R., Kleeberg, I., and Deckwer, W., Biodegradation of polyesters containing aromatic constituents, J. Biotechnol., 2001, vol. 86, pp. 87–95. https://doi.org/10.1016/S0168-1656(00)00407-7

    Article  CAS  PubMed  Google Scholar 

  9. Marten, E., Muller, R., and Deckwer, W., Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters, Polym. Degrad. Stab., 2005, vol. 88, pp. 371–381. https://doi.org/10.1016/j.polymdegradstab.2004.12.001

    Article  CAS  Google Scholar 

  10. Muller, R., Schrader, H., Profe, J., Dresler, K., and Deckwer, W., Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T-fusca, Macromol. Rapid Commun., 2005, vol. 26, pp. 1400–1405. https://doi.org/10.1002/marc.200500410

    Article  CAS  Google Scholar 

  11. Ronkvist, A., Xie, W., Lu, W., and Gross, R., Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate), Macromolecules, 2009, vol. 42, pp. 5128–5138. https://doi.org/10.1021/ma9005318

    Article  CAS  Google Scholar 

  12. Shirke, A., Basore, D., Butterfoss, G., Bonneau, R., Bystroff, C., and Gross, R., Towards rational thermostabilization of Aspergillus oryzae cutinase: Insights into catalytic and structural stability, Proteins, 2016, vol. 84, pp. 60–72. https://doi.org/10.1002/prot.24955

    Article  PubMed  Google Scholar 

  13. Yang, S., Xu, H., Yan, Q., Liu, Y., Zhou, P., and Jiang, Z., A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters), J. Ind. Microbiol. Biotechnol., 2013, vol. 40, pp. 217–226. https://doi.org/10.1007/s10295-012-1222-x

    Article  CAS  PubMed  Google Scholar 

  14. Malafatti-Picca, L., de Barros, ChavesM.R., de Castro, A.M., Valoni, E., de Oloiveira, V.M., Marsaioli, A.J., de Franceschi de Angelis, D., and Attili-Angelis, D., Hydrocarbon-associated substrates reveal promising fungi for poly(ethylene terephthalate) (PET) depolymerization, Braz. J. Microbiol., 2019, vol. 50, no. 3, pp. 633–648. https://doi.org/10.1007/s42770-019-00093-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sooksai, T., Bankeeree, W., Sangwatanaroj, U., Lotrakul, P., Punnapayak, H., and Prasongsuk, S., Production of cutinase from Fusarium falciforme and its application for hydrophilicity improvement of polyethylene terephthalate fabric, 3 Biotech., 2019, vol. 9, p. 389. https://doi.org/10.1007/s13205-019-1931-1

  16. Nimchua, T., Punnapayak, H., and Zimmermann, W., Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi, Biotechnol. J., 2007, vol. 2, pp. 361–364. https://doi.org/10.1002/biot.200600095

    Article  CAS  PubMed  Google Scholar 

  17. Dimarogona, M., Nikolaivits, E., Kanelli, M., Christakopoulos, P., Sandgren, M., and Topakas, E., Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential, Biochim. Biophys. Acta, Gen. Subj., 2015, vol. 1850, pp. 2308–2317. https://doi.org/10.1016/j.bbagen.2015.08.009

    Article  CAS  Google Scholar 

  18. Alisch-Mark, M., Herrmann, A., and Zimmermann, W., Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi, Biotechnol. Lett., 2006, vol. 28, pp. 681–685. https://doi.org/10.1007/s10529-006-9041-7

    Article  CAS  PubMed  Google Scholar 

  19. Ahuactzin-Perez, M., Tlecuitl-Beristaine, S., Garcia-Davilae, J., Gonzalez-Perezf, M., Gutierrez-Ruiz, M., and Sancheza, C., Degradation of di(2-ethylhexyl)phthalate by Fusarium culmorum: kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modeling pathway based on quantum chemical modeling, Sci. Total Environ., 2016, vols. 566–567, pp. 1186–1193. https://doi.org/10.1016/j.scitotenv.2016.05.169

    Article  CAS  PubMed  Google Scholar 

  20. Pozdnyakova, N.N., Varese, G.C., Prigione, V., Dubrovskaya, E.V., Balandina, S.A., and Turkovskaya, O.V., Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii, Int. Microbiol., 2019, vol. 22, pp. 103–110. https://doi.org/10.1007/s10123-018-0032-z

    Article  CAS  PubMed  Google Scholar 

  21. Peterson, S.W. and Jurjevic, Z., The Talaromyces pinophilus species complex, Fungal Biol., 2019, vol. 123, pp. 745–762. https://doi.org/10.1016/j.funbio.2019.06.007

    Article  PubMed  Google Scholar 

  22. Bezalel, L., Hadar, Y., Fu, P., Freeman, J., and Cerniglia, C., Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2547–2553. https://doi.org/10.1128/aem.62.7.2547-2553.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper, D. and Goldenberg, B., Surface-active agents from two Bacillus species, Appl. Environ. Microbiol., 1987, vol. 53, pp. 224–229. https://doi.org/10.1128/aem.53.2.224-229.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niku-Paavola, M., Karhunen, E., Salola, P., and Raunio, V., Ligninolytic enzymes of the white rot fungus Phlebia radiate, Biochem. J., 1988, vol. 254, pp. 877–884. https://doi.org/10.1042/bj2540877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alish, M., Feuerhack, A., Muller, H., Mensak, B., Andreaus, J., and Zimmermann, W., Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates, Biocatal. Biotrans., 2004, vol. 22, pp. 347–351. https://doi.org/10.1080/10242420400025877

    Article  CAS  Google Scholar 

  26. Sowmya, H.V., Ramalingappa Krishnappa, M., and Thippeswamy, B., Degradation of polyethylene by trichoderma harzianum, SEM, FTIR, and NMR analyses, Environ. Monit. Assess., 2014, vol. 186, pp. 6577–6586. https://doi.org/10.1007/s10661-014-3875-6

    Article  CAS  PubMed  Google Scholar 

  27. Reyes-Cesar, A., Absalon, A., Fernandez, F., Gonzalez, J., and Cortes-Espinosa, D., Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil, World J. Microbiol. Biotechnol., 2014, vol. 30, pp. 999–1009. https://doi.org/10.1007/s11274-013-1518-7

    Article  CAS  PubMed  Google Scholar 

  28. Mendez-Liter, J., de Eugenio, L.I., Nieto-Dominguez, M., Prieto, A., and Martinez, M.J., Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: a review, Bioresour. Technol., 2021, vol. 324, p. 124623. https://doi.org/10.1016/j.bior.tech.2020.124623

    Article  CAS  PubMed  Google Scholar 

  29. Krivobok, S., Miriouchkine, E., Seigle-Murandi, F., and Benoit-Guyod, J.-L., Biodegradation of anthracene by soil fungi, Chemosphere, 1998, vol. 37, pp. 523–530.

    Article  CAS  PubMed  Google Scholar 

  30. Vroumsia, T., Steiman, R., Seigle-Murandi, F., and Benoit-Guyod, J.-L., Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) by selected fungi, Chemosphere, 1999, vol. 39, pp. 1397–1405. https://doi.org/10.1016/S0045-6535(99)00042-9

    Article  CAS  PubMed  Google Scholar 

  31. Luft, L., Confortin, T.C., Todero, I., Zabot, G.L., and Mazutti, M.A., An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production, Crit. Rev. Biotechnol., 2020. https://doi.org/10.1080/07388551.2020.1805405

  32. Da, SilvaA.F., Banat, I.M., Giachini, A.J., and Robl, D., Fungal biosufactants, from nature to biotechnological product: bioprospection, production and potential applications, Bioprocess Biosyst. Eng., 2021, vol. 44, pp. 2003–2034. https://doi.org/10.1007/s00449-021-02597-5

    Article  CAS  Google Scholar 

  33. Sanches, M., Luzeiro, I., Cortez, A., de Souza, E., Albuquerque, P., Chopra, H., and de Souza, J., Production of biosurfactants by Ascomycetes, Int. J. Microbiol., 2021, p. 6669263. https://doi.org/10.1155/2021/6669263

  34. Qazi, M., Kanwal, T., Jadoon, M., Ahmed, S., and Fatima, N., Isolation and characterization of a surfactant-producing Fusarium sp. BS-8 from oil contaminated soil, Biotechnol. Prog., 2014, vol. 30, pp. 1065–1075. https://doi.org/10.1002/btpr.1933

    Article  CAS  PubMed  Google Scholar 

  35. Espino-Rammer, L., Ribitsch, D., Przylucka, A., Marold, A., Greimel, K., Acero, E., Guebitz, G., Kubicek, C., and Druzhinina, I., Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins, Appl. Environ. Microbiol., 2013, vol. 79, pp. 4230–4238. https://doi.org/10.1128/AEM.01132-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, S., Su, L., Billig, S., Zimmermann, W., Chen, J., and Wu, J., Biochemical characterization of the cutinases from Thermobifida fusca, J. Mol. Catal. B: Enzym., 2010, vol. 63, pp. 121–127. https://doi.org/10.1016/j.molcatb.2010.01.001

    Article  CAS  Google Scholar 

  37. Kawai, F., Oda, M., Tamashiro, T., Waku, T., Tanaka, N., Yamamoto, M., Mizushima, H., Miyakawa, T., and Tanokura, M., A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 10053–10064. https://doi.org/10.1007/s00253-014-5860-y

    Article  CAS  PubMed  Google Scholar 

  38. Purdy, R. and Kolattuk, P., Depolymerization of a hydroxy fatty-acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi—isolation and some properties of enzyme, Arch. Biochem. Biophys., 1973, vol. 159, pp. 61–69. https://doi.org/10.1016/0003-9861(73)90429-3

    Article  CAS  PubMed  Google Scholar 

  39. Horn, S., Vaaje-Kolstad, G., Westereng, B., and Eijsink, V., Novel enzymes for the degradation of cellulose, Biotechnol. Biofuels, 2012, vol. 5, p. 45. https://doi.org/10.1186/1754-6834-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gan, Q., Allen, S., and Taylor, G., Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modeling, Process Biochem., 2003, vol. 38, pp. 1003–1018. https://doi.org/10.1016/S0032-9592(02)00220-0

    Article  CAS  Google Scholar 

  41. Barth, M., Oeser, T., Wei, R., Then, J., Schmidt, J., and Zimmermann, W., Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca, Biochem. Eng. J., 2015, vol. 93, pp. 222–228. https://doi.org/10.1016/j.bej.2014.10.012

    Article  CAS  Google Scholar 

  42. Lopez, M., Vargas-Garcia, M., Suarez-Estrella, F., Nichols, N., Dien, B., and Moreno, J., Lignocellulose-degrading enzymes produced by the ascomycetes Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment, Enzyme Microbial. Technol., 2007, vol. 40, pp. 794–800. https://doi.org/10.1016/j.enzmictec.2006.06.012

    Article  CAS  Google Scholar 

  43. Obruca, S., Marova, I., Matouskova, P., Haronikova, A., and Lichnova, A., Production of lignocelluloses-degrading enzymes employing Fusarium solani F-552, Folia Microbiol., 2012, vol. 57, pp. 221–227. https://doi.org/10.1007/s12223-012-0098-5

    Article  CAS  Google Scholar 

  44. Saparrat, M., Balatti, P., Martinez, M., and Jurado, M., Differential regulation of laccase gene expression in Coriolopsis rigida LPSC 232, Fungal Biol., 2010, vol. 114, pp. 999–1006. https://doi.org/10.1016/j.funbio.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  45. Pant, D. and Adholeya, A., Concentration of fungal ligninolytic enzymes by ultrafiltration and their use in distillery effluent decolorization, World J. Microbiol. Biotechnol., 2009, vol. 25, pp. 1793–1800. https://doi.org/10.1007/s11274-009-0079-2

    Article  CAS  Google Scholar 

  46. Huy, N., Tien, N., Huyen, L., Quang, H., Tung, T., Luong, N., and Park, S.-M., Screening and production of manganese peroxidase from Fusarium sp. on residue materials, Mycobiology, 2017, vol. 45, pp. 52–56. https://doi.org/10.5941/MYCO.2017.45.1.52

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Doctor (Biol.) Professor V.A. Terekhova (Institute of Ecology and Evolution, Russian Academy of Sciences) for providing the Trichoderma harzianum strain.

Funding

The work was carried out within the framework of the state assignment no. GR 121031700141-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Pozdnyakova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors outside the scope of people’s normal professional activities.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Gordon

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: ABTS, 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulfonate); OD600, optical density at a wavelength of 600 nm; PAH, polycyclic aromatic hydrocarbon; PET, polyethylene terephthalate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdnyakova, N.N., Burov, A.M., Antonov, E.A. et al. The Ability of Ascomycetes to Transform Polyethylene Terephthalate. Appl Biochem Microbiol 59, 1192–1200 (2023). https://doi.org/10.1134/S0003683823090077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823090077

Keywords:

Navigation