Skip to main content
Log in

Knockout of BAX and BAK1 Genes and Overexpression of BCL2, BECN1 Genes Increase Lifespan and the Maximum Density of a CHO-S Cell Culture

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Two genome editions have resulted in the CHO cell line 4BGD with homozygous knockouts of the BAK1, BAX, DHFR and GLUL genes, and overexpression of the BCL2 and BECN1 genes. This line is capable of long-term growth without changing the culture medium and exhibits a fivefold increase in the integral cell density compared to the parental cell line under the same cultivation regime. Overexpression of the BCL2, BECN1 gene pair led to a significant increase in cell density on days 6‒10 of cultivation compared to the cell line with a knockout of the BAK1, BAX, DHFR and GLUL genes, while the integral viable cell density increases by 34%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Levenberg, S., Yarden, A., Kam, Z., and Geiger, B., p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry, Oncogene, 1999, vol. 18, no. 4, pp. 869–876. https://doi.org/10.1038/sj.onc.1202396

    Article  CAS  PubMed  Google Scholar 

  2. Simon, L. and Karim, M.N., Control of starvation-induced apoptosis in Chinese hamster ovary cell cultures, Biotechnol. Bioeng., 2002, vol. 78, no. 6, pp. 645–657. https://doi.org/10.1002/bit.10250

    Article  CAS  PubMed  Google Scholar 

  3. MacDonald, M.A., Barry, C., Groves, T., Martinez, V.S., Gray, P.P., Baker, K., Shave, E., Mahler, S., Munro, T., and Marcellin, E., Modeling apoptosis resistance in CHO cells with CRISPR-mediated knockouts of BAK1, BAX, and BOK, Biotechnol. Bioeng., 2022, vol. 119, no. 6, pp. 1380–1391. https://doi.org/10.1002/bit.28062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fussenegger M., Fassnacht D., Schwartz R., Zanghi J.A., Graf M., Bailey J.E., Portner R. Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivation, Cytotechnology, 2000, vol. 32, no. 1, pp. 45–61. https://doi.org/10.1023/A:1008168522385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, Y.G., Kim, J.Y., Mohan, C., and Lee, G.M., Effect of Bcl-Xl overexpression on apoptosis and autophagy in recombinant Chinese hamster ovary cells under nutrient-deprived condition, Biotechnol. Bioeng., 2009, vol. 103, no. 4, pp. 757–766. https://doi.org/10.1002/bit.22298

    Article  CAS  PubMed  Google Scholar 

  6. Safari, F. and Akbari, B., Knockout of caspase-7 gene improves the expression of recombinant protein in CHO cell line through the cell cycle arrest in G2/M phase, Biol. Res., 2022, vol. 55, no. 1, p. 2. https://doi.org/10.1186/s40659-021-00369-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sung, Y.H., Hwang, S.J., and Lee, G.M., Influence of downregulation of caspase-3 by siRNAs on sodium-butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin, Metab. Eng., 2005, vol. 7, nos. 5–6, pp. 457–466. https://doi.org/10.1016/j.ymben.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  8. Tan, J.G., Lee, Y.Y., Wang, T., Yap, M.G., Tan, T.W., and Ng, S.K., Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors, Biotechnol. J., 2015, vol. 10, no. 5, pp. 790–800. https://doi.org/10.1002/biot.201400764

    Article  CAS  PubMed  Google Scholar 

  9. Hwang, S.O. and Lee, G.M., Effect of Akt overexpression on programmed cell death in antibody-producing Chinese hamster ovary cells, J. Biotechnol., 2009, vol. 139, no. 1, pp. 89–94. https://doi.org/10.1016/j.jbiotec.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  10. Baek, E., Noh, S.M., and Lee, G.M., Anti-apoptosis engineering for improved protein production from CHO cells, Methods Mol. Biol., 2017, vol. 1603, pp. 71–85. https://doi.org/10.1007/978-1-4939-6972-2_5

    Article  CAS  PubMed  Google Scholar 

  11. Su, M., Mei, Y., and Sinha, S., Role of the crosstalk between autophagy and apoptosis in cancer, J. Oncol., 2013, p. 102735. https://doi.org/10.1155/2013/102735

  12. Chen, Q., Kang, J., and Fu, C., The independence of and associations among apoptosis, autophagy, and necrosis, Signal Transduct. Target. Ther., 2018, vol. 3, p. 18. https://doi.org/10.1038/s41392-018-0018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gordy, C. and He, Y.W., The crosstalk between autophagy and apoptosis: where does this lead?, Protein Cell, 2012, vol. 3, no. 1, pp. 17–27. https://doi.org/10.1007/s13238-011-1127-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Di Malta, C., Cinque, L., and Settembre, C., Transcriptional regulation of autophagy: mechanisms and diseases, Front. Cell Dev. Biol., 2019, vol. 7, p. 114. https://doi.org/10.3389/fcell.2019.00114

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marquez, R.T. and Xu, L., Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch, Am. J. Cancer Res., 2012, vol. 2, no. 2, pp. 214–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang, R., Zeh, H.J., Lotze, M.T., and Tang, D., The Beclin 1 network regulates autophagy and apoptosis, Cell Death Differ., 2011, vol. 18, no. 4, pp. 571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, J., Cai, Y., Xu, K., Ren, X., Sun, J., Lu, S., Chen, J., and Xu, P., Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells, Oncol. Rep., 2018, vol. 40, no. 4, pp. 1927–1936. https://doi.org/10.3892/or.2018.6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orlova, N.A., Dayanova, L.K., Gayamova, E.A., Sinegubova, M.V., Kovnir, S.V., and Vorobiev, I.I., Targeted knockout of the DHFR, GLUL, BAK1, and BAX genes by the multiplex genome editing in CHO cells, Dokl. Biochem. Biophys., 2022, vol. 502, no. 1, pp. 40–44. https://doi.org/10.1134/S1607672922010082

    Article  CAS  PubMed  Google Scholar 

  19. Orlova, N.A., Kovnir, S.V., Hodak, J.A., Vorobiev, I.I., Gabibov, G., and Skryabin, K.G., Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells, BMC Biotechnol., 2014, vol. 14, p. 56. https://doi.org/10.1186/1472-6750-14-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shin, S.W., Kyeong, M., and Lee, J.S., Next-Generation cell engineering platform for improving recombinant protein production in mammalian cells, in Cell Culture Engineering and Technology, Portner, R., Ed., Cham: Springer International, 2021, vol. 189–224. https://doi.org/10.1007/978-3-030-79871-0_7

  21. Safari, F., Farajnia, S., Behzad Behbahani, A. Zarredar, H., Barekati-Mowahed, M., and Dehghani, H., Caspase-7 deficiency in Chinese hamster ovary cells reduces cell proliferation and viability, Biol. Res., 2020, vol. 53, no. 1, p. 52. https://doi.org/10.1186/s40659-020-00319-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, Y.Y., Wong, K.T., Tan, J., Toh, P.C., Mao, Y., Brusic, V., and Yap, M.G., Overexpression of heat shock proteins (HSPs) in CHO cells for extended culture viability and improved recombinant protein production, J. Biotechnol., 2009, vol. 143, no. 1, pp. 34–43. https://doi.org/10.1016/j.jbiotec.2009.05.013

    Article  CAS  PubMed  Google Scholar 

  23. Lu, Y., Zhou, Q., Han, Q., Wu, P., Zhang, L., Zhu, L., Weaver, D.T., Xu, C., and Zhang, B., Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells, Appl. Microbiol. Biotechnol., 2018, vol. 102, no. 14, pp. 6081–6093. https://doi.org/10.1007/s00253-018-9070-x

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J.S. and Lee, G.M., Rapamycin treatment inhibits CHO cell death in a serum-free suspension culture by autophagy induction, Biotechnol. Bioeng., 2012, vol. 109, no. 12, pp. 3093–3102. https://doi.org/10.1002/bit.24567

    Article  CAS  PubMed  Google Scholar 

  25. Lee, J.S., Ha, T.K., Park, J.H., and Lee, G.M., Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction, Biotechnol. Bioeng., 2013, vol. 110, no. 8, pp. 2195–207. https://doi.org/10.1002/bit.24879

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J.S. and Lee, G.M., Estimation of autophagy pathway genes for autophagy induction: overexpression of Atg9A does not induce autophagy in recombinant Chinese hamster ovary cells, Biochem. Eng. J., 2012, vol. 68, pp. 221–226. https://doi.org/10.1016/j.bej.2012.07.021

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the Fundamentals of Biotechnology Federal Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Orlova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Gordon

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: Bak-1, Bcl-2 antagonist/killer 1; Bax, Bcl-2-associated X factor; CHO, Chinese hamster ovary cell line; DHFR, dihydrofolate reductase; ER, endoplasmic reticulum; IVCD, integral viable cell density; gRNA, guide RNA; GS, glutamine synthetase; HT, hypoxanthine-thymidine; ORF, open reading frame.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovnir, S.V., Dayanova, L.K., Gaiamova, E.A. et al. Knockout of BAX and BAK1 Genes and Overexpression of BCL2, BECN1 Genes Increase Lifespan and the Maximum Density of a CHO-S Cell Culture. Appl Biochem Microbiol 59, 1047–1052 (2023). https://doi.org/10.1134/S0003683823080057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823080057

Keywords:

Navigation