Skip to main content

Advertisement

Log in

Polymeric Micelles for Targeted Drug Delivery System

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Targeted drug transport is becoming more and more popular for increasing the efficiency of interactions between a drug and a target. This method allows the drug concentration to be increased at a desired site and to block or strongly limit drug accumulation in healthy organs and tissues. Micelle-based nanopreparations can be considered as a system with unique characteristics compared to other nanocarriers, since the smaller size allows passive targeting of target organs (even poorly permeable ones) and efficient internalization by cells. Polymeric micelles are increasingly being used to create drug delivery systems. This paper presents a brief overview of the production of polymeric micelles, the release of the drug, and the possibility of their practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rhee, Y.-S. and Mansour, H.M., Int. J. Nanotechnol., 2011, vol. 8, nos. 1–2, pp. 84–114.

    Article  CAS  Google Scholar 

  2. Kiparissides, C. and Kammona, O., Can. J. Chem. Eng., 2013, vol. 91, no. 4, pp. 638–651.

    Article  CAS  Google Scholar 

  3. Hossen, S., Hossain, M.K., Basher, M.K., Mia, M.N.H., Rahman, M.T., and Uddin, M.J., J. Adv. Res., 2019, vol. 15, pp. 1–18.

    Article  CAS  PubMed  Google Scholar 

  4. Huda, S., Alam, M.A., and Sharma, P.K., J. Drug Deliv. Sci. Technol., 2020, vol. 60, p. 102018.https://doi.org/10.1016/j.jddst.2020.102018

  5. Chariou, P.L., Ortega-Rivera, O.A., and Steinmetz, N.F., ACS Nano, vol. 14, no. 3, pp. 2678–2701.

  6. Mishra, N., Pant, P., Porwal, A., Jaiswal, J., Samad, A.M., and Tiwari, S., Am. J. Pharm. Technol. Res., 2016, vol. 6, no. 1, pp. 1–24.

    CAS  Google Scholar 

  7. Basinska, T., Gadzinowski, M., Mickiewicz, D., and Slomkowski, S., Polymers (Basel), 2021, vol. 13, no. 12, p. 2022.https://doi.org/10.3390/polym13122022

  8. Xia, W., Tao, Z., Zhu, B., Zhang, W., Liu, C., Chen, S., and Song, M., Int. J. Mol. Sci., 2021, vol. 22, no. 17, p. 9118.https://doi.org/10.3390/ijms22179118

  9. Adepu, S. and Ramakrishna, S., Molecules, 2021, vol. 26, no. 19, p. 5905. https://doi.org/10.3390/molecules26195905

  10. Hwang, S.R. Chakraborty, K., An, J.M., Mondal, J., Yoon, H.Y., and Lee, Y.-K., Pharmaceutics, 1875, vol. 13, no. 11, p. 1875. https://doi.org/10.3390/pharmaceutics13111875

  11. Veselov, V.V., Nosyrev, A.E., Jicsinszky, L., Alyautdin, R.N., and Cravotto, G., Cancers (Basel), 2022, vol. 14, no. 3, p. 622. https://doi.org/10.3390/cancers14030622

  12. Varde, N.K. and Pack, D.W., Expert Opin. Biol. Ther., 2004, vol. 4, no. 1, pp. 35–51.

    Article  CAS  PubMed  Google Scholar 

  13. Subramani, K., Int. J. Nanotechnol., 2006, vol. 3, no. 4, pp. 557–580.

    Article  CAS  Google Scholar 

  14. Valcourt, D.M., Dang, M.N., Scully, M.A., and Day, E.S., ACS Nano, vol. 14, no. 3, pp. 3378–3388.

  15. Liu, D., Yang, F., Xiong, F., and Gu, N., Theranostics, 2016, vol. 6, no. 9, pp. 1306–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abdellatif, A.A.H., Mohammed, H.A., Khan, R.A., Singh, V., Bouazzaoui, A., Yusuf, M., Akhtar, N., Khan, M., Al-Subaiyel, A., Mohammed, S.A.A., and Al-Omar, M.S., Nanotechnol. Rev., 2021, vol. 10, no. 1, pp. 1493–1559.

    Article  CAS  Google Scholar 

  17. Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., and Langer, R., Nat. Rev. Drug Discov., 2021, vol. 20, pp. P. 101–124.

  18. Timin, A.S., Gao, H., Voronin, D.V., Gorin, D.A., and Sukhorukov, G.B., Adv. Mater. Interfaces, 2017, vol. 4, no. 1, p. 160338. https://doi.org/10.1002/admi.201600338

  19. Ganta, S., Devalapally, H., Shahiwala, A., and Amiji, M., J. Controlled Release, 2008, vol. 126, no. 3, pp. 187–204.https://doi.org/10.1016/j.jconrel.2007.12.017

  20. Sawant, R.R. and Torchilin, V.P., Mol. Membr. Biol., 2010, vol. 27, no. 7, pp. 232–246.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y., Huang, Y., and Li, S., AAPS Pharm. Sci. Technol., vol. 15, no. 4, pp. 862–871.

  22. Lu, Y., Zhang, E., Yang, J., and Cao, Z., Nano Res., 2018, vol. 11, pp. 4985–4998.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yousefpour, M.M. and Yari, K.A., Cancer Chemother. Pharmacol., 2017, vol. 79, no. 4, pp. 637–649.

    Article  Google Scholar 

  24. Paliwal, R., Babu, R.J., and Palakurthi, S., AAPS Pharm. Sci. Technol., vol. 15, no. 6, pp. 1527–1534.

  25. Farokhzad, O.C. and Langer, R., ACS Nano, vol. 3, no. 1, pp. 16–20.

  26. Bae, Y.H. and Park, K., J. Controlled Release, 2011, vol. 153, no. 3, pp. 198–205.

    Article  CAS  Google Scholar 

  27. Grobmyer, S.R. and Moudgil, B.M., Cancer Nanotechnology: Methods and Protocols, New York: Humana Press, 2010.

    Book  Google Scholar 

  28. Torchilin, V.P., Nat. Rev. Drug Discov., 2005, vol. 4, no. 2, pp. 145–160.

    Article  CAS  PubMed  Google Scholar 

  29. Rajagopalan, R. and Yakhmi, J.V., in Nanostructures for Cancer Therapy, Ficai, A. and Grumezescu, A.M., Amsterdam: Elsevier, 2017, pp. 211–240.

  30. Beloqui, A., Coco, R., Memvanga, P.B., Ucakar, B., Rieux, A., and Preat, V., Int. J. Pharm., 2014, vol. 473, nos. 1–2, pp. 203–212.

    Article  CAS  PubMed  Google Scholar 

  31. Beloqui, A., Solinis, M.A., Rieux, A., Preat, V., and Rodriguez-Gascon, A., Int. J. Pharm., 2014, vol. 468, nos. 1–2, pp. 105–111.

    Article  CAS  PubMed  Google Scholar 

  32. Beloqui, A., Solinis, M.A., Rodriguez-Gascon, A., Almeida, A.J., and Preat, V., Nanomedicine, 2016, vol. 12, no. 1, pp. 143–161.

    Article  CAS  PubMed  Google Scholar 

  33. Schiliro, C. and Firestein, B.L., Cells, 2021, vol. 10, no. 5, p. 1056.https://doi.org/10.3390/cells10051056

  34. Liu, C., Jin, Y., and Fan, Z., Front. Oncol., 2021, vol. 11, p. 698023.https://doi.org/10.3389/fonc.2021.698023

  35. Duan, C., Gao, J., Zhang, D., Jia, L., Liu, Y., Zheng, D., et al., Biomacromolecules, 2011, vol. 12, no. 12, pp. 4335–4343.

    Article  CAS  PubMed  Google Scholar 

  36. Jin, C., Bai, L., Wu, H., Song, W., Guo, G., and Dou, K., Pharm. Res., 2009, vol. 26, no. 7, pp. 1776–1784.

    Article  CAS  PubMed  Google Scholar 

  37. Schleich, N., Po, S., Jacobs, D., Ucakar, B., Gallez, B., Danhier, F., and Preat, V., J. Controlled Release, 2014, vol. 194, pp. 82–91.

    Article  CAS  Google Scholar 

  38. Mura, S., Nicolas, J., and Couvreur, P., Nat. Mater., 2013, vol. 12, pp. 991–1003.

    Article  CAS  PubMed  Google Scholar 

  39. Wong, P.T. and Choi, S.K., Chem. Rev., 2015, vol. 115, no. 9, pp. 3388–3432.

    Article  CAS  PubMed  Google Scholar 

  40. Ma, Z., Li, B., Peng, J., and Gao, D., Pharmaceutics, 2022, vol. 14, no. 2, p. 434.https://doi.org/10.3390/pharmaceutics14020434

  41. Geraili, A., Xing, M., and Mequanin, K., View, 2021, vol. 2, no. 5, p. 20200126. https://doi.org/10.1002/VIW.20200126

  42. Kubiak, T., Polym. Med., 2022. https://doi.org/10.17219/pim/145513

  43. Mishra, B., Patel, B.B., and Tiwari, S., Nanomedicine, 2010, vol. 6, no. 1, pp. 9–24.

    Article  CAS  PubMed  Google Scholar 

  44. Webster, D.M., Sundaram, P., and Byrne, M.E., Eur. J. Pharm. Biopharm., 2013, vol. 84, no. 1, pp. 1–20.

    Article  CAS  PubMed  Google Scholar 

  45. Yadav, H.K.S., Almokdad, A.A., Shaluf, S.I.M., and Debe, M.S., in Nanocarriers for Drug Delivery, Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., and Thomas, S., Amsterdam: Elsevier, 2019.

  46. Fluksman, A. and Benny, O., Anal. Methods, 2019, vol. 11, no. 30, pp. 3810–3818.

    Article  CAS  Google Scholar 

  47. Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., and Chen, P., J. Controlled Release, 2013, vol. 166, no. 2, pp. 182–194.

    Article  CAS  Google Scholar 

  48. Owens, D.E.III. and Peppas, N.A., Int. J. Pharm., 2006, vol. 307, no. 1, pp. 93–102.

    CAS  PubMed  Google Scholar 

  49. Photos, P.J., Bacakova, L., Discher, B., Bates, F.S., and Discher, D.E., J. Controlled Release, 2003, vol. 90, no. 3, pp. 323–334.

    Article  CAS  Google Scholar 

  50. Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantu, L., and Nicoli, S., J. Controlled Release, 2021, vol. 332, pp. 312–336.

    Article  CAS  Google Scholar 

  51. Hussein, Y.H.A. and Youssry, M., Materials, 2018, vol. 11, no. 5, p. 688.https://doi.org/10.3390/ma11050688

  52. Atanase, L.I. and Riess, G., Polymers, 2018, vol. 10, no. 1, p. 62.https://doi.org/10.3390/polym10010062

  53. Osborne, D.W., Ward, A.J., and O’Neill, K.J., J. Pharm. Pharmacol., 1991, vol. 43, no. 6, pp. 450–454.

    CAS  PubMed  Google Scholar 

  54. Nath, N., Hyun, J., Ma, H., and Chilkoti, A., Surf. Sci., 2004, vol. 570, nos 1–2, pp. 98–110.

    Article  CAS  Google Scholar 

  55. Wang, S., Lu, L., Gruetzmacher, J.A., Currier, B.L., and Yaszemski, M.J., Biomaterials, 2006, vol. 27, no. 6, pp. 832–841.

    Article  CAS  PubMed  Google Scholar 

  56. Kim, J.-Y., Shim, S.-B., and Shim, J.-K., J. Hazard. Mater., 2004, vol. 116, no. 3, pp. 205–212.

    Article  CAS  PubMed  Google Scholar 

  57. Bader, H., Ringsdorf, H., and Schmidt, B., Macromol. Chem., 1984, vol. 123, no. 1, pp. 457–485.

    Google Scholar 

  58. Simon, J.A., Menopause, 2006, vol. 13, no. 2, pp. 222–231.https://doi.org/10.1097/01.gme.0000174096.56652.4f

  59. Lee, A.L., Wang, Y., Pervaiz, S., Fan, W., and Yang, Y.Y., Macromol. Biosci., 2011, vol. 11, no. 2, pp. 296–307.

    Article  CAS  PubMed  Google Scholar 

  60. Scott-Moncrieff, J.C., Shao, Z., and Mitra, A.K., J. Pharm. Sci., 1994, vol. 83, no. 10, pp. 1465–1469.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, B., Ma, R., Liu, G., Li, Y., Liu, X., An, Y., and Shi, L., Langmuir, 2009, vol. 25, no. 21, pp. 12522–12528.

    Article  CAS  PubMed  Google Scholar 

  62. Yang, X., Zhang, L., Zheng, L., Wang, Y., Gao, L., Luo, R., Li, X., Gong, C., Luo, H., and Wu, Q., J. Mater. Chem., vol. 10, no. 8, pp. 1236–1249.

  63. Thipparaboina, R., Chavan, R.B., Kumar, D., Modugula, S., and Shastri, N.R., Colloids Surf., B, 2015, vol. 135, pp. 291–308.

    Article  CAS  Google Scholar 

  64. Makhmalzade, B.S. and Chavoshy, F., J. Adv. Pharm. Technol. Res., 2018, vol. 9, no. 1, pp. 2–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hwang, D., Ramsey, J.D., and Kabanov, A.V., Adv. Drug Deliv. Rev., 2020, vol. 156, pp. 80–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kulthe, S.S., Choudhari, Y.M., Inamdar, N.N., and Mourya, V., Des. Monomers Polym., 2012, vol. 15, no. 5, pp. 465–521.

    Article  CAS  Google Scholar 

  67. Trivedi, R. and Kompella, U.B., Nanomedicine, 2010, vol. 5, no. 3, pp. 485–505.

    Article  CAS  PubMed  Google Scholar 

  68. Imran, M. and Shah, M.R., Shafiullah in Design and Development of New Nanocarriers, Grumezescu, A.M., Amsterdam: Elsevier, 2018, pp. 365–400.

  69. Ahmad, Z., Shah, A., Siddiq, M., and Kraatz, H.-B., RSC Adv., 2014, vol. 4, no. 33, pp. 17028–17038.

    Article  CAS  Google Scholar 

  70. Shi, Y., Lammers, T., Storm, G., and Hennink, W.E., Macromol. Biosci., 2017, vol. 17, no. 1, p. 1600160.https://doi.org/10.1002/mabi.201600160

  71. Lee, J., Cho, E.C., and Cho, K., J. Controlled Release, 2004, vol. 94, nos. 2–3, pp. 323–335.

    Article  CAS  Google Scholar 

  72. Zeng, L., Gao, J., Liu, Y., Gao, J., Yao, L., Yang, X., et al., TrAC, Trends Anal. Chem. (Pers. Ed.), 2019, vol. 118, pp. 303–314.

  73. Zhu, Y., Meng, T., Tan, Y., Yang, X., Liu, Y., Liu, X., Yu, F., Wen, L., Dai, S., Yuan, H., and Hu, F., Mol. Pharm., 2018, vol. 15, no. 11, pp. 5374–5386.

    Article  CAS  PubMed  Google Scholar 

  74. Pepić, I., Lovrić, J., and Filipović-Grčić, J., Eur. J. Pharm. Sci., 2013, vol. 50, no. 1, pp. 42–55.

    Article  PubMed  Google Scholar 

  75. Grimaudo, M.A., Pescina, S., Padula, C., Santi, P., Concheiro, A., Alvarez-Lorenzo, C., and Nicoli, S., Expert Opin. Drug Deliv., 2019, vol. 16, no. 4, pp. 397–413.

    Article  CAS  PubMed  Google Scholar 

  76. Xiao, K., Li, Y., Luo, J., Lee, J.S., Xiao, W., Gonik, A.M., Agarwal, R.G., and Lam, K.S., Biomaterials, 2011, vol. 32, no. 13, pp. 3435–3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Logie, J., Owen, S.C., McLaughlin, C.K., and Shoichet, M.S., Chem. Mater., 2014, vol. 26, no. 9, pp. 2847–2855.

    Article  CAS  Google Scholar 

  78. Shiraishi, K., Sanada, Y., Mochizuki, S., Kawano, K., Maitani, Y., Sakurai, K., and Yokoyama, M., J. Controlled Release, 2015, vol. 203, pp. 77–84.

    Article  CAS  Google Scholar 

  79. Moffitt, M., Khougaz, K., and Eisenberg, A., Acc. Chem. Res., 1996, vol. 29, no. 2, pp. 95–102.

    Article  CAS  Google Scholar 

  80. Cheng, F.R., Yang, Y.J., Liang, Y., Yan, J.Q., Cao, J., Su, T., Jiang, L., He, B., Luo, X.L., and Gu, Z.W., RSC Adv., 2014, vol. 4, no. 107, pp. 62708–62716.

    Article  CAS  Google Scholar 

  81. Zhang, L. and Eisenberg, A., Polym. Adv. Technol., 1998, vol. 9, nos. 10–11, pp. 677–699.

    Article  CAS  Google Scholar 

  82. Cabral, H., Miyata, K., Osada, K., and Kataoka, K., Chem. Rev., 2018, vol. 118, no. 14, pp. 6844–6892.

    Article  CAS  PubMed  Google Scholar 

  83. Truong, N.P., Whittaker, M.R., Mak, C.W., and Davis, T.P., Expert Opin. Drug Deliv., 2015, vol. 12, no. 1, pp. 129–142.

    Article  CAS  PubMed  Google Scholar 

  84. Gorner, T., Gref, R., Michenot, D., Sommer, F., Tran, M.N., and Dellacherie, E., J. Controlled Release, 1999, vol. 57, no. 3, pp. 259–268.

    Article  CAS  Google Scholar 

  85. Lee, H., Zeng, F., Dunne, M., and Allen, C., Biomacromolecules, 2005, vol. 6, no. 6, pp. 3119–3128.

    Article  CAS  PubMed  Google Scholar 

  86. Soo, P.L., Lovric, J., Davidson, P., Maysinger, D., and Eisenberg, A., Mol. Pharm., 2005, vol. 2, no. 6, pp. 519–527.

    Article  CAS  Google Scholar 

  87. Jeong, Y.-I., Cheon, J.-B., Kim, S.-H., Nah, J.-W., Lee, Y.-M., Sung, Y.-K., Akaike, T., and Cho, C.-S., J. Controlled Release, 1998, vol. 51, nos. 2–3, pp. 169–178.

    Article  CAS  Google Scholar 

  88. Huh, K.M., Lee, S.C., Cho, Y.W., Lee, J., Jeong, J.H., and Park, K., J. Controlled Release, 2005, vol. 101, nos 1–3, pp. 59–68.

    Article  CAS  Google Scholar 

  89. Huh, K.M., Min, H.S., Lee, S.C., Lee, H.J., Kim, S., and Park, K., J. Controlled Release, 2008, vol. 126, no. 2, pp. 122–129.

    Article  CAS  Google Scholar 

  90. Allen, C., Eisenberg, A., Mrsic, J., and Maysinger, D., Drug Deliv., 2000, vol. 7, no. 3, pp. 139–145.

    Article  CAS  PubMed  Google Scholar 

  91. De Jaeghere, F., Allémann, E., Leroux, J.-C., Stevels, W., Feijen, J., Doelker, E., and Gurny, R., Pharm. Res., 1999, vol. 16, no. 6, pp. 859–866.

    Article  CAS  PubMed  Google Scholar 

  92. Gorshkova, M.Y. and Stotskaya, L.L., Polym. Adv. Technol., 1998, vol. 9, no. 6, pp. 362–367.

    Article  CAS  Google Scholar 

  93. Soo, P.L., Luo, L., Maysinger, D., and Eisenberg, A., Langmuir, 2002, vol. 18, no. 25, pp. 9996–10004.

    Article  CAS  Google Scholar 

  94. Staroverov, S.A., Pristensky, D.V., Yermilov, D.N., Gabalov, K.P., Zhemerichkin, D.A., Sidorkin, V.A., Shcherbakov, A.A., Shchyogolev, S.Y., and Dykman, L.A., Drug Deliv., 2006, vol. 13, no. 5, pp. 351–355.

    Article  CAS  PubMed  Google Scholar 

  95. Staroverov, S.A., Sidorkin, V.A., Fomin, A.S., Shchyogolev, S.Y., and Dykman, L.A., J. Vet. Sci., 2011, vol. 12, no. 4, pp. 303–307.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Al-Qushawi, A., Rassouli, A., Atyabi, F., Peighambari, S.M., Esfandyari-Manesh, M., Shams, G.R., and Yazdani, A., Iran. J. Pharm. Res., 2016, vol. 15, no. 4, pp. 663–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Troncarelli, M.Z., Brandao, H.M., Gern, J.C., Guimaraes, A.S., and Langoni, H., in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, Méndez-Vilas, A., Ed., Badajoz: Formatex Research Center, 2013, pp. 543–556.

    Google Scholar 

  98. Hussein, I.D. and Youssry, M., Materials, 2018, vol. 11, no. 5, p. 688.https://doi.org/10.3390/ma11050688

  99. Matsumura, Y., Jpn. J. Clin. Oncol., 2008, vol. 38, no. 12, pp. 793–802.

    Article  PubMed  Google Scholar 

  100. Rey, A.I., Segura, J., Arandilla, E., and López-Bote, C.J., J. Anim. Sci., 2013, vol. 91, no. 3, pp. 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  101. Rey, A., Amazan, D., Cordero, G., Olivares, A., and López-Bote, C.J., Int. J. Vitam. Nutr. Res., 2014, vol. 84, nos. 5–6, pp. 229–243.

    Article  CAS  PubMed  Google Scholar 

  102. Francis, M.F., Cristea, M., and Winnik, F.M., Biomacromolecules, 2005, vol. 6, no. 5, pp. 2462–2467.

    Article  CAS  PubMed  Google Scholar 

  103. Tabernero, J., Shapiro, G.I., LoRusso, P.M., Cervantes, A., Schwartz, G.K., Weiss, G.J., et al., Cancer Discov., 2013, vol. 3, no. 4, pp. 406–417.

    Article  CAS  PubMed  Google Scholar 

  104. Shen, Y., Zhang, J., Hao, W., Wang, T., Liu, J., Xie, Y., Xu, S., and Liu, H., Int. J. Nanomed., 2018, vol. 13, pp. 537–553.

    Article  CAS  Google Scholar 

  105. Vail, D.M., Von Euler, H., Rusk, A.W., Barber, L., Clifford, C., Elmslie, R., et al., J. Vet. Int. Med., 2012, vol. 26, no. 3, pp. 598–607.

    Article  CAS  Google Scholar 

  106. Sutton, D., Nasongkla, N., Blanco, E., and Gao, J., Pharm. Res., 2007, vol. 24, no. 6, pp. 1029–1046.

    Article  CAS  PubMed  Google Scholar 

  107. Castillo, P.M., Jimenez-Ruiz, A., Carnerero, J.M., and Prado-Gotor, R., ChemPhysChem, 2018, vol. 19, no. 21, pp. 2810–2828.

    Article  CAS  PubMed  Google Scholar 

  108. Xu, P., Van Kirk, E.A., Li, S., Murdoch, W.J., Ren, J., Hussain, M.D., Radosza, M., and Shen, Y., Colloids Surf., B, 2006 vol. 48, no. 1, pp. 50–57.

    Article  CAS  Google Scholar 

  109. Ren, S., Wang, M., Wang, C., Wang, Y., Sun, C., Zeng, Z., Cui, H., and Zhao, X., Polymers, 2021, vol. 13, no. 19, p. 3307.https://doi.org/10.3390/polym13193307

  110. Li, X., Yang, Z., Yang, K., Zhou, Y., Chen, X., Zhang, Y., Wang, F., Liu, Y., and Ren, L., Nanoscale. Res. Lett, 2009, vol. 4, p. 1502.https://doi.org/10.1007/s11671-009-9427-2

  111. Bhadra, D., Bhadra, S., Jain, S., and Jain, N.K., Int. J. Pharm., 2003, vol. 257, nos. 1–2, pp. 111–124.

    Article  CAS  PubMed  Google Scholar 

  112. Cesur, H., Rubinstein, I., Pai, A., and Onyuksel, H., Nanomedicine, 2009, vol. 5, no. 2, pp. 178–183.

    Article  CAS  PubMed  Google Scholar 

  113. Duan, X., Xiao, J., Yin, Q., Zhang, Z., Yu, H., Mao, S., and Li, Y., ACS Nano, vol. 7, no. 7, pp. 5858–5869.

  114. Tagami, T. and Ozeki, T., J. Pharm. Sci., 2017, vol. 106, no. 9, pp. 2219–2226.

    Article  CAS  PubMed  Google Scholar 

  115. Bu, H.Z., Gukasyan, H.J., Goulet, L., Lou, X.J., Xiang, C., and Koudriakova, T., Curr. Drug Metab., 2007, vol. 8, no. 2, pp. 91–107.

    Article  CAS  PubMed  Google Scholar 

  116. Norouzi, P., Amini, M., Dinarvand, R., Arefian, E., Seyedjafari, E., and Atyabi, F., Mater. Sci. Eng., vol. 116, p. 111161.https://doi.org/10.1016/j.msec.2020.111161

  117. Chopra, P., Hao, J., and Li, S.K., J. Controlled Release, 2012, vol. 160, no. 1, pp. 96–104.

    Article  CAS  Google Scholar 

  118. Ren, S., Chen, D., and Jiang, M., J. Polym. Sci., Part A, 2009, vol. 47, no. 17, pp. 4267–4278.

    Article  CAS  Google Scholar 

  119. Liu, L.H., Venkatraman, S.S., Yang, Y.Y., Guo, K., Lu, J., He, B.P., Moochhala, S., and Kan, L.J., Biopolymers, 2008, vol. 90, no. 5, pp. 617–623.

    Article  CAS  PubMed  Google Scholar 

  120. Weissig, V., Pettinger, T.K., and Murdock, N., Int. J. Nanomed., 2014, vol. 9, pp. 4357–4377.

    Article  CAS  Google Scholar 

  121. Pristensky, D.V., Staroverov, S.A., Ermilov, D.N., Shchyogolev, S.Y., and Dykman, L.A., Biochemistry (Moscow): Suppl. Ser. B, 2007, vol. 1, no. 3, pp. 249–253.

    Google Scholar 

  122. Gao, Y., Xie, J., Chen, H., Gu, S., Zhao, R., Shao, J., and Jia, L., Biotechnol. Adv., 2014, vol. 32, no. 4, pp. 761–777.

    Article  CAS  PubMed  Google Scholar 

  123. Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., and Chan, W.C.W., Nat. Rev. Mat., 2016, vol. 1, p. 16014.https://doi.org/10.1038/natrevmats.2016.14

  124. van der Meel, R., Lammers, T., and Hennink, W., Expert Opin. Drug Deliv., 2017, vol. 14, no. 1, pp. 1–5.

    Article  PubMed  Google Scholar 

  125. Wang, J., Li, S., Han, Y., Guan, J., Chung, S., Wang, C., and Li, D., Front. Pharmacol., 2018, vol. 9, p. 202. https://doi.org/10.3389/fphar.2018.00202

  126. Rollerova, E., Jurcovicova, J., Mlynarcikova, A., Sadlonova, I., Bilanicova, D., Wsolova, L., et al., Reprod. Toxicol., 2015, vol. 57, pp. 165–175.

    Article  CAS  PubMed  Google Scholar 

  127. Scsukova, S., Mlynarcikova, A., Kiss, A., and Rollerova, E., Neuro Endocrinol. Lett., 2015, vol. 36, pp. 88–94.

    PubMed  Google Scholar 

  128. McBain, J.W., Trans. Faraday Soc., 1913, vol. 9, pp. 99–101.

    Google Scholar 

  129. Croy, S.R. and Kwon, G.S., Curr. Pharm. Des., 2006, vol. 12, no. 36, pp. 4669–4684.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation, project no. 19-14-00077-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Guliy.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliy, O.I., Staroverov, S.A., Fomin, A.S. et al. Polymeric Micelles for Targeted Drug Delivery System. Appl Biochem Microbiol 58, 726–737 (2022). https://doi.org/10.1134/S0003683822060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822060059

Keywords:

Navigation