Skip to main content

Advertisement

Log in

Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Gene therapy has shown extensive potential to treat human diseases occurring from the defection of genes like various types of cancers. The cationic polymers, as non-viral gene carriers, offer the ability to engineer carrier systems having customized features that can be adapted to suit any system. Upon polymeric micelle systems’ core–shell structure, micelles can create the capacity to load genes/gene-drugs into the different micelle compartments, respectively.

Methods

The search will be managed in Pubmed, Medline, Cochrane library, Embase and Proquest for articles related to polymeric micelle-based gene delivery in order to cancer gene therapy using the accommodative search terms. A database of the first search of all search engines results will be made and repeated articles will be removed. After that, the related articles will be selected, and also the references of selected articles will be searched in order to find any other articles to complete the search database.

Results

This study reviews kinds of polymeric nanomicelles, which have been used in gene therapy, critical parameters for micelle-based gene delivery, challenges and advantages/disadvantages as well as biosafety of nanomicelles in gene delivery systems. Furthermore, the discussion has focused on stimuli-responsive polymers and strategy and mechanisms regarding tumor-selective gene delivery.

Conclusions

This study provides an overview of the advantages/disadvantages of polymeric-based nanocarriers for cancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Theerasilp M, Nasongkla N (2013) Comparative studies of poly(epsilon-caprolactone) and poly(d,l-lactide) as core materials of polymeric micelles. J Microencapsul 30(4):390–397. sdoi:10.3109/02652048.2012.746746

    Article  CAS  PubMed  Google Scholar 

  2. Qin L, Zhang F, Lu X, Wei X, Wang J, Fang X, Si D, Wang Y, Zhang C, Yang R, Liu C, Liang W (2013) Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors. J Control Release 171(2):133–142. doi:10.1016/j.jconrel.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  3. Lv F, Cao J, Zhang J, Qian J, Peng W, Sun S, Li W, Zhang W, Guo W, Li J (2014) Phase I and pharmacokinetic study of polymeric micelle-formulated paclitaxel in adult Chinese patients with advanced solid tumors. Cancer Chemother Pharmacol. doi:10.1007/s00280-014-2452-6

    PubMed Central  Google Scholar 

  4. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648. doi:10.1016/j.pharmthera.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  5. Itaka K, Kataoka K (2009) Recent development of nonviral gene delivery systems with virus-like structures and mechanisms. Eur J Pharm Biopharm 71(3):475–483. doi:10.1016/j.ejpb.2008.09.019

    Article  CAS  PubMed  Google Scholar 

  6. Nishiyama N, Bae Y, Miyata K, Fukushima S, Kataoka K (2005) Smart polymeric micelles for gene and drug delivery. Drug Discov Today Technol 2(1):21–26. doi:10.1016/j.ddtec.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  7. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3 Pt A):427–443. doi:10.1016/j.ejpb.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee DK, Wolfe T, Lee J, Brown AP, Singh PK, Bhattarai SR, Diagaradjane P, Krishnan S (2013) Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation. Transl Cancer Res 2(4):256–268. doi:10.3978/j.issn.2218-676X.2013.08.10

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiong XB, Binkhathlan Z, Molavi O, Lavasanifar A (2012) Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery. Acta Biomater 8(6):2017–2033. doi:10.1016/j.actbio.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  10. Morshed RA, Cheng Y, Auffinger B, Wegscheid ML, Lesniak MS (2013) The potential of polymeric micelles in the context of glioblastoma therapy. Front Pharmacol 4:157. doi:10.3389/fphar.2013.00157

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jafari M, Soltani M, Naahidi SN, Karunaratne D, Chen P (2012) Nonviral approach for targeted nucleic acid delivery. Curr Med Chem 19 (2):197–208. doi:10.2174/092986712803414141

    Article  CAS  PubMed  Google Scholar 

  12. Tan C, Wang Y, Fan W (2013) Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies. Pharmaceutics 5(1):201–219. doi:10.3390/pharmaceutics5010201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS (2014) Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. J Controll Release. doi:10.1016/j.jconrel.2014.03.041

    Google Scholar 

  14. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589. doi:10.1007/s11095-010-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tiwari S, Gupta M, Vyas SP (2012) Nanocarrier mediated cytosolic delivery of drug, DNA and proteins. Proc Natl Acad Sci India Sect B Biol Sci 82 (S1):127–150. doi:10.1007/s40011-012-0078-1

    Article  CAS  Google Scholar 

  16. Felber AE, Dufresne MH, Leroux JC (2012) pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 64(11):979–992. doi:10.1016/j.addr.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  17. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16. doi:10.1007/s11095-006-9132-0

    Article  CAS  PubMed  Google Scholar 

  18. Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60(10):1137–1152. doi:10.1016/j.addr.2008.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trivedi R, Kompella UB (2010) Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond) 5 (3):485–505. doi:10.2217/nnm.10.10

    Article  CAS  Google Scholar 

  20. Rijcken CJ, Soga O, Hennink WE, van Nostrum CF (2007) Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. J Control Release 120(3):131–148. doi:10.1016/j.jconrel.2007.03.023

    Article  CAS  PubMed  Google Scholar 

  21. Brissault B, Leborgne C, Scherman D, Guis C, Kichler A (2011) Synthesis of poly(propylene glycol)-block-polyethylenimine triblock copolymers for the delivery of nucleic acids. Macromol Biosci 11(5):652–661. doi:10.1002/mabi.201000404

    Article  CAS  PubMed  Google Scholar 

  22. Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161(2):554–565. doi:10.1016/j.jconrel.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  23. Morton SW, Zhao X, Quadir MA, Hammond PT (2014) FRET-enabled biological characterization of polymeric micelles. Biomaterials 35(11):3489–3496. doi:10.1016/j.biomaterials.2014.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Godin B, P. Driessen WH, Proneth B, Lee S-Y, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P (2010) 2-An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet 69:31–64. doi:10.1016/S0065-2660(10)69009-8

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fattal E, Barratt G (2009) Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 157(2):179–194. doi:10.1111/j.1476-5381.2009.00148.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo J, Bourre L, Soden DM, O’Sullivan GC, O’Driscoll C (2011) Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv 29(4):402–417. doi:10.1016/j.biotechadv.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  27. Xu FJ, Yang WT (2011) Polymer vectors via controlled/living radical polymerization for gene delivery. Prog Polym Sci 36(9):1099–1131. doi:10.1016/j.progpolymsci.2010.11.005

    Article  CAS  Google Scholar 

  28. Lu J, Owen SC, Shoichet MS (2011) Stability of self-assembled polymeric micelles in serum. Macromolecules 44(15):6002–6008. doi:10.1021/ma200675w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu J-L, Cheng H, Jin Y, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Novel polycationic micelles for drug delivery and gene transfer. J Mater Chem 18(37):4433–4441. doi:10.1039/B801249K

    Article  CAS  Google Scholar 

  30. Park K, Lee MY, Kim KS, Hahn SK (2010) Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials 31(19):5258–5265. doi:10.1016/j.biomaterials.2010.03.018

    Article  CAS  PubMed  Google Scholar 

  31. Lee SH, Mok H, Lee Y, Park TG (2011) Self-assembled siRNA–PLGA conjugate micelles for gene silencing. J Controlled Release 152(1):152–158. doi:10.1016/j.jconrel.2010.12.007

    Article  CAS  Google Scholar 

  32. Mishra D, Kang HC, Bae YH (2011) Reconstitutable charged polymeric (PLGA)(2)-b-PEI micelles for gene therapeutics delivery. Biomaterials 32(15):3845–3854. doi:10.1016/j.biomaterials.2011.01.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH (2011) Self-assembled biodegradable amphiphilic PEG–PCL–lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials 32(30):7721–7731. doi:10.1016/j.biomaterials.2011.06.064

    Article  CAS  PubMed  Google Scholar 

  34. Velluto D, Thomas SN, Simeoni E, Swartz MA, Hubbell JA (2011) PEG-b-PPS-b-PEI micelles and PEG-b-PPS PEG-b-PPS-b-PEI mixed micelles. Biomaterials 32(36):9839–9847. doi:10.1016/j.biomaterials.2011.08.079

    Article  CAS  PubMed  Google Scholar 

  35. Du YZ, Lu P, Zhou JP, Yuan H, Hu FQ (2010) Stearic acid grafted chitosan oligosaccharide micelle as a promising vector for gene delivery system: factors affecting the complexation. Int J Pharm 391(1–2):260–266. doi:10.1016/j.ijpharm.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  36. Du YZ, Cai LL, Li J, Zhao MD, Chen FY, Yuan H, Hu FQ (2011) Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. Int J Nanomedicine 6:1559–1568. doi:10.2147/IJN.S23828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, Niidome T, Katayama Y, Okitsu O (2008) Efficient delivery of siRNA using dendritic poly(l-lysine) for loss-of-function analysis. J Controlled Release 126(1):59–66. doi:10.1016/j.jconrel.2007.10.022

    Article  CAS  Google Scholar 

  38. Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6(3):752–762. doi:10.1021/mp9000124

    Article  CAS  PubMed  Google Scholar 

  39. Kano A, Moriyama K, Yamano T, Nakamura I, Shimada N, Maruyama A (2011) Grafting of poly(ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA. J Control Release 149(1):2–7. doi:10.1016/j.jconrel.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, Mori T, Katayama Y, Niidome T (2009) In vivo siRNA delivery with dendritic poly(l-lysine) for the treatment of hypercholesterolemia. Mol Biosyst 5(11):1306–1310. doi:10.1039/b900880b

    Article  PubMed  Google Scholar 

  41. Oba M, Vachutinsky Y, Miyata K, Kano MR, Ikeda S, Nishiyama N, Itaka K, Miyazono K, Koyama H, Kataoka K (2010) Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid dna encoding soluble Flt-1. Mol Pharm 7(2):501–509. doi:10.1021/mp9002317

    Article  CAS  PubMed  Google Scholar 

  42. Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, Halnaut J, Pittella F, Kim HJ, Nishiyama N, Kataoka K (2012) Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano 6(6):5174–5189. doi:10.1021/nn300942b

    Article  CAS  PubMed  Google Scholar 

  43. Shen Y, Li Q, Tu J, Zhu J (2009) Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery. Carbohydr Polym 77(1):95–104. doi:10.1016/j.carbpol.2008.12.010

    Article  CAS  Google Scholar 

  44. Talelli M, Rijcken CJ, van Nostrum CF, Storm G, Hennink WE (2010) Micelles based on HPMA copolymers-main. Adv Drug Deliv Rev 62(2):231–239. doi:10.1016/j.addr.2009.11.029

    Article  CAS  PubMed  Google Scholar 

  45. Lundy BB, Convertine A, Miteva M, Stayton PS (2013) Neutral polymeric micelles for RNA delivery. Bioconjug Chem 24(3):398–407. doi:10.1021/bc300486k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uchida S, Itaka K, Chen Q, Osada K, Miyata K, Ishii T, Harada-Shiba M, Kataoka K (2011) Combination of chondroitin sulfate and polyplex micelles from Poly(ethylene glycol)-poly{N’-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity. J Control Release 155(2):296–302. doi:10.1016/j.jconrel.2011.04.026

    Article  CAS  PubMed  Google Scholar 

  47. Kumagai M, Shimoda S, Wakabayashi R, Kunisawa Y, Ishii T, Osada K, Itaka K, Nishiyama N, Kataoka K, Nakano K (2012) Effective transgene expression without toxicity by intraperitoneal administration of PEG-detachable polyplex micelles in mice with peritoneal dissemination. J Controll Release 160(3):542–551. doi:10.1016/j.jconrel.2012.03.021

    Article  CAS  Google Scholar 

  48. Sun T-M, Du J-Z, Yao Y-D, Mao C-Q, Dou S, Huang S-Y, Zhang P-Z, Leong KW, Song E-W, Wang J (2011) Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano 5(2):1483–1494. doi:10.1021/nn103349h

    Article  CAS  PubMed  Google Scholar 

  49. Nam K, Nam HY, Kim PH, Kim SW (2012) Paclitaxel-conjugated PEG and arginine-grafted bioreducible poly (disulfide amine) micelles for co-delivery of drug and gene. Biomaterials 33(32):8122–8130. doi:10.1016/j.biomaterials.2012.07.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi S, Shi K, Tan L, Qu Y, Shen G, Chu B, Zhang S, Su X, Li X, Wei Y, Qian Z (2014) The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials 35(15):4536–4547. doi:10.1016/j.biomaterials.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  51. Wang C, Ravi S, Martinez GV, Chinnasamy V, Raulji P, Howell M, Davis Y, Mallela J, Seehra MS, Mohapatra S (2012) Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 163(1):82–92. doi:10.1016/j.jconrel.2012.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Y, Xia X, Dong W, Wang H, Li L, Ma P, Sheng W, Xu X, Liu Y (2016) Acid sensitive polymeric micelles combining folate and bioreducible conjugate for specific intracellular siRNA delivery. Macromol Biosci 16(5):759–773. doi:10.1002/mabi.201500389

    Article  CAS  PubMed  Google Scholar 

  53. Garg SM, Falamarzian A, Vakili MR, Aliabadi HM, Uludag H, Lavasanifar A (2016) Polymeric micelles for MCL-1 gene silencing in breast tumors following systemic administration. Nanomedicine (Lond) 11 (17):2319–2339. doi:10.2217/nnm-2016-0178

    Article  CAS  Google Scholar 

  54. Salzano G, Navarro G, Trivedi MS, De Rosa G, Torchilin VP (2015) Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol Cancer Ther 14(4):1075–1084. doi:10.1158/1535-7163.MCT-14-0556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, Miura Y, Ahn J, Azuma R, Nishiyama N, Miyata K, Kataoka K (2016) siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 17(1):246–255. doi:10.1021/acs.biomac.5b01334

    Article  CAS  PubMed  Google Scholar 

  56. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553. doi:10.1038/nbt.2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goncz KK, Prokopishyn NL, Abdolmohammadi A, Bedayat B, Maurisse R, Davis BR, Gruenert DC (2006) Small fragment homologous replacement-mediated modification of genomic beta-globin sequences in human hematopoietic stem/progenitor cells. Oligonucleotides 16(3):213–224. doi:10.1089/oli.2006.16.213

    Article  CAS  PubMed  Google Scholar 

  58. Vasquez KM, Narayanan L, Glazer PM (2000) Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290(5491):530–533

    Article  CAS  PubMed  Google Scholar 

  59. Li L, He ZY, Wei XW, Gao GP, Wei YQ (2015) Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther 26(7):452–462. doi:10.1089/hum.2015.069

    Article  CAS  PubMed  Google Scholar 

  60. Blanco E, Kessinger CW, Sumer BD, Gao J (2009) Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood) 234(2):123–131. doi:10.3181/0808-MR-250

    Article  CAS  Google Scholar 

  61. Xiong XB, Falamarzian A, Garg SM, Lavasanifar A (2011) Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 155(2):248–261. doi:10.1016/j.jconrel.2011.04.028

    Article  CAS  PubMed  Google Scholar 

  62. Pepic I, Lovric J, Filipovic-Grcic J (2013) How do polymeric micelles cross epithelial barriers? Eur J Pharm Sci 50(1):42–55. doi:10.1016/j.ejps.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  63. Takahashi A, Ozaki Y, Kuzuya A, Ohya Y (2014) Impact of core-forming segment structure on drug loading in biodegradable polymeric micelles using PEG-b-poly(lactide-co-depsipeptide) block copolymers. Biomed Res Int 2014:579212. doi:10.1155/2014/579212

    PubMed  PubMed Central  Google Scholar 

  64. Osada K, Shiotani T, Tockary TA, Kobayashi D, Oshima H, Ikeda S, Christie RJ, Itaka K, Kataoka K (2012) Enhanced gene expression promoted by the quantized folding of pDNA within polyplex micelles. Biomaterials 33(1):325–332. doi:10.1016/j.biomaterials.2011.09.046

    Article  CAS  PubMed  Google Scholar 

  65. Zhao B, Wang XQ, Wang XY, Zhang H, Dai WB, Wang J, Zhong ZL, Wu HN, Zhang Q (2013) Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Part Fibre Toxicol 10:47. doi:10.1186/1743-8977-10-47

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang X, Cao D, Wang N, Sun L, Li L, Nie S, Wu Q, Liu X, Yi C, Gong C (2014) In vitro and in vivo safety evaluation of biodegradable self-assembled monomethyl poly (ethylene glycol)-poly (epsilon-caprolactone)-poly (trimethylene carbonate) micelles. J Pharm Sci 103(1):305–313. doi:10.1002/jps.23800

    Article  CAS  PubMed  Google Scholar 

  67. Shah V, Taratula O, Garbuzenko OB, Patil ML, Savla R, Zhang M, Minko T (2013) Genotoxicity of different nanocarriers: possible modifications for the delivery of nucleic acids. Curr Drug Discov Technol 10(1):8–15. doi:10.2174/157016313804998870

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Knudsen KB, Northeved H, Kumar Ek P, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Moller P, Roursgaard M (2014) In vivo toxicity of cationic micelles and liposomes. Nanomedicine (Lond). doi:10.1016/j.nano.2014.08.004

    Google Scholar 

  69. Chu DSH, Schellinger JG, Shi J, Convertine AJ, Stayton PS, Pun SH (2012) Application of living free radical polymerization for nucleic acid delivery. Acc Chem Res 45(7):1089–1099. doi:10.1021/ar200242z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ahmed M, Narain R (2013) Progress of RAFT based polymers in gene delivery. Prog Polym Sci 38(5):767–790. doi:10.1016/j.progpolymsci.2012.09.008

    Article  CAS  Google Scholar 

  71. Heath F, Haria P, Alexander C (2007) Varying polymer architecture to deliver drugs. AAPS J 9(2):E235–E240. doi:10.1208/aapsj0902026

    Article  PubMed  PubMed Central  Google Scholar 

  72. Talelli M, Hennink WE (2011) Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine (Lond) 6 (7):1245–1255. doi:10.2217/nnm.11.91

    Article  CAS  Google Scholar 

  73. Kyosuke Isoda NK, Daisuke Miyamoto, Tohru Takarada, Mizuo Maeda (2011) RAFT-generated poly(N-isopropylacrylamide)–DNA block copolymers for temperature-responsive formation of polymer micelles. React Funct Polym 71:367–371

    Article  Google Scholar 

  74. Benoit DSW, Srinivasan S, Shubin AD, Stayton PS (2011) Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery. Biomacromolecules 12(7):2708–2714. doi:10.1021/bm200485b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou QL, Chen ZY, Wang YX, Yang F, Lin Y, Liao YY (2014) Ultrasound-mediated local drug and gene delivery using nanocarriers. Biomed Res Int 2014:963891. doi:10.1155/2014/963891

    PubMed  PubMed Central  Google Scholar 

  76. Zhou Z, Li L, Yang Y, Xu X, Huang Y (2014) Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials. doi:10.1016/j.biomaterials.2014.04.059

    Google Scholar 

  77. Kang JH, Toita R, Katayama Y (2010) Bio and nanotechnological strategies for tumor-targeted gene therapy. Biotechnol Adv 28(6):757–763. doi:10.1016/j.biotechadv.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  78. Ohya Y, Takeda S, Shibata Y, Ouchi T, Kano A, Iwata T, Mochizuki S, Taniwaki Y, Maruyama A (2011) Evaluation of polyanion-coated biodegradable polymeric micelles as drug delivery vehicles. J Control Release 155(1):104–110. doi:10.1016/j.jconrel.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  79. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48. doi:10.1016/j.addr.2012.09.013

    Article  Google Scholar 

  80. Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K (2001) Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2(4):1067–1070. doi:10.1021/bm015574q

    Article  CAS  PubMed  Google Scholar 

  81. Ohya Y, Takeda S, Shibata Y, Ouchi T, Maruyama A (2010) Preparation of highly stable biodegradable polymer micelles by coating with polyion complex. Macromol Chem Phys 211(16):1750–1756. doi:10.1002/macp.201000167

    Article  CAS  Google Scholar 

  82. Gajbhiye V, Gong S (2013) Lectin functionalized nanocarriers for gene delivery. Biotechnol Adv 31(5):552–562. doi:10.1016/j.biotechadv.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  83. Hwa Kim S, Hoon Jeong J, Joe CO, Gwan Park T (2005) Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate. J Control Release 103(3):625–634. doi:10.1016/j.jconrel.2005.01.006

    Article  PubMed  Google Scholar 

  84. Vinogradov S, Batrakova E, Li S, Kabanov A (1999) Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 10(5):851–860. doi:10.1021/bc990037c

    Article  CAS  PubMed  Google Scholar 

  85. Vachutinsky Y, Oba M, Miyata K, Hiki S, Kano MR, Nishiyama N, Koyama H, Miyazono K, Kataoka K (2011) Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J Control Release 149(1):51–57. doi:10.1016/j.jconrel.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  86. Ge Z, Chen Q, Osada K, Liu X, Tockary TA, Uchida S, Dirisala A, Ishii T, Nomoto T, Toh K, Matsumoto Y, Oba M, Kano MR, Itaka K, Kataoka K (2014) Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials 35(10):3416–3426. doi:10.1016/j.biomaterials.2013.12.086

    Article  CAS  PubMed  Google Scholar 

  87. Qian Y, Zha Y, Feng B, Pang Z, Zhang B, Sun X, Ren J, Zhang C, Shao X, Zhang Q, Jiang X (2013) PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials 34(8):2117–2129. doi:10.1016/j.biomaterials.2012.11.050

    Article  CAS  PubMed  Google Scholar 

  88. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci 103(16):6315–6320. doi:10.1073/pnas.0601755103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118(2):216–224. doi:10.1016/j.jconrel.2006.12.008

    Article  CAS  PubMed  Google Scholar 

  90. Xiong X-B, Uludağ H, Lavasanifar A (2010) Virus-mimetic polymeric micelles for targeted siRNA delivery. Biomaterials 31(22):5886–5893. doi:10.1016/j.biomaterials.2010.03.075

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Yari Khosroushahi.

Ethics declarations

Ethical issues

No ethical issues to be promulgated.

Conflict of interest

The authors declare that there are no conflicts of interests. There are no sources of financial funding and support.

Additional information

M. Y. Marzbali and A. Y. Khosroushahi are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefpour Marzbali, M., Yari Khosroushahi, A. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol 79, 637–649 (2017). https://doi.org/10.1007/s00280-017-3273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3273-1

Keywords

Navigation