Skip to main content
Log in

De Novo Designing a Novel Signal Peptide for Secretion of Neurturin to the Periplasmic Space of Escherichia coli

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Neurotrophic factors, including neurturin, increase the life span of the neurons and prevent neuronal destruction. As recombinant expression of neurturin with 3 disulfide bonds in Escherichia coli leads to the formation of inclusion bodies in the cytoplasm, periplasmic production of it is preferred. Signal peptides naturally exist at the N-terminus of the most newly synthesized proteins and are responsible for determining the final destination of the proteins. In the present study for the first time a novel signal peptide was designed de novo to secret recombinant neurturin to the periplasmic space of E. coli through the Sec pathway. Also the efficiency of de novo designed signal peptide (D.D.SP) was compared with that of pelB signal peptide. Designing process was performed using experiences from previous optimization studies and several bioinformatics tools such as BioEdit 7.2 software and SignalP-5.0 server. The quantitative analysis of Western blotting bands by ImageJ software showed that about 82% of expressed neurturin was secreted to the periplasmic space by D.D.SP while only 44% of expressed neurturin was obtained in the periplasmic space when PelB was used as a signal peptide. Moreover, CD spectroscopy analysis showed that the structure of secreted recombinant neurturin has high similarity to the commercial one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chen, R., Biotechnol. Adv., 2012, vol. 30, no. 5, pp. 1102–1107.

    Article  CAS  Google Scholar 

  2. Demain, A.L. and Vaishnav, P., Biotechnol. Adv., 2009, vol. 27, no. 3, pp. 297–306.

    Article  CAS  Google Scholar 

  3. Huang, C-J., Lin, H., and Yang, X., J. Ind. Microbiol. Biotechnol., 2012, vol. 39, no. 3, pp. 383–399.

    Article  CAS  Google Scholar 

  4. Costa, T.R., Felisberto-Rodrigues, C., Meir, A., Prevost, M.S., Redzej, A., Trokter, M., et al., Nat. Rev. Microbiol., 2015, vol. 13, no. 6, pp. 343–359.

    Article  CAS  Google Scholar 

  5. Green, E.R. and Mecsas, J., Microbiol. Spectr., 2016, vol. 4, pp. 213–239.

    Article  Google Scholar 

  6. Bensing, B.A., Siboo, I.R., and Sullam, P.M., J. Bacteriol., 2007, vol. 189, no. 10, pp. 3846–3854.

    Article  CAS  Google Scholar 

  7. Low, K.O., Mahadi, N.M., and Illias, R.M., Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 9, pp. 3811–3826.

    Article  CAS  Google Scholar 

  8. Yoon, S.H., Kim, S.K., and Kim, J.F., Recent. Pat. Biotechnol., 2010, vol. 4, no. 1, pp. 23–29.

    Article  CAS  Google Scholar 

  9. Walker, M.J. and Xu, X-M., Brain Sci., 2018, vol. 8, no. 6, pp. 109.

    Article  Google Scholar 

  10. Airaksinen, M.S. and Saarma, M., Nat. Rev. Neurosci., 2002, vol. 3, no. 5, pp. 383–394.

    Article  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York: Cold Spring Harbor Press, 1989.

  12. Brown, T.A., Gene Cloning and DNA Analysis: An Introduction, New York: Wiley, 2016.

    Google Scholar 

  13. Hajihassan, Z., Sohrabi, M., Rajabi Bazl, M., and Eftekhary, H., Rom. Biotechnol. Lett., 2016, vol. 21, no. 5, pp. 11850–11856.

    CAS  Google Scholar 

  14. Bradford, M.M., Anal. Biochem., 1976, vol. 72, no. 1–2, pp. 248–254.

    Article  CAS  Google Scholar 

  15. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  Google Scholar 

  16. Protein Blotting. A Practical Approach, Dunbar, B.S., Ed., New York: IRL Press, 1994.

    Google Scholar 

  17. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., Nat. Methods, 2012, vol. 9, no. 7, pp. 671–675.

    Article  CAS  Google Scholar 

  18. Hajihassan, Z., Abdi, M., Roshani Yasaghi, E., and Rabbani-Chadegani, A., Minerva Biotecnol., 2017, vol. 29, no. 3, pp. 126–132.

    Google Scholar 

  19. Inouye, M., Halegoua, S., and Beckwith, J., Crit. Rev. Biochem. Mol. Biol., 1980, vol. 7, no. 4, pp. 339–371.

    CAS  Google Scholar 

  20. Zalucki, Y.M., Power, P.M., and Jennings, M.P., Nucleic Acids Res., 2007, vol. 35, no. 17, pp. 5748–5754.

    Article  CAS  Google Scholar 

  21. Puziss, J.W., Harvey, R., and Bassford, P., J. Bacteriol., 1992, vol. 174, no. 20, pp. 6488–6497.

    Article  CAS  Google Scholar 

  22. Chou, Y-T. and Gierasch, L.M., J. Biol. Chem., 2005, vol. 280, no. 38, pp. 32753–32760.

    Article  CAS  Google Scholar 

  23. Kebir, M.O. and Kendall, D.A., Biochemistry, 2002, vol. 41, no. 17, pp. 5573–5580.

    Article  CAS  Google Scholar 

  24. Suominen, I., Meyer, P., Tilgmann, C., Glumoff, T., Glumoff, V., Käpylä, J., et al., Microbiology, 1995, vol. 141, no. 3, pp. 649–654.

    Article  CAS  Google Scholar 

  25. Rusch, S.L., Chen, H., Izard, J.W., and Kendall, D.A., J. Cell Biochem., 1994, vol. 55, no. 2, pp. 209–217.

    Article  CAS  Google Scholar 

  26. Adams, H., Scotti, P.A., de Cock, H., Luirink, J., and Tommassen, J., Eur. J. Biochem., 2002, vol. 269, no. 22, pp. 5564–5571.

    Article  CAS  Google Scholar 

  27. Jonet, M.A., Mahadi, N.M., Murad, A.M.A., Rabu, A., Bakar, F.D.A., Rahim, R.A., et al., J. Mol. Microb. Biotech., 2012, vol. 22, no. 1, pp. 48–58.

    Article  CAS  Google Scholar 

  28. Geukens, N., Frederix, F., Reekmans, G., Lammertyn, E., Van Mellaert, L., Dehaen, W. et al., Biochem. Biophys. Res. Commun., 2004, vol. 314, no. 2, pp. 459–467.

    Article  CAS  Google Scholar 

  29. Malten, M., Nahrstedt, H., Meinhardt, F., and Jahn, D., Biotechnol. Bioeng., 2005, vol. 91, no. 5, pp. 616–621.

    Article  CAS  Google Scholar 

  30. Karamyshev, A.L., Karamysheva, Z.N., Kajava, A.V., Ksenzenko, V.N., and Nesmeyanova, M.A., J. Mol. Biol., 1998, vol. 277, no. 4, pp. 859–870.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank also M.P. Naghshbandi for help in drawing figures.

Funding

The authors would like to acknowledge the financial support of University of Tehran (Iran) for this research under Grant no. 28669/06/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Hajihassan.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, M., Hajihassan, Z. De Novo Designing a Novel Signal Peptide for Secretion of Neurturin to the Periplasmic Space of Escherichia coli. Appl Biochem Microbiol 57 (Suppl 1), S54–S63 (2021). https://doi.org/10.1134/S0003683821100057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821100057

Keywords:

Navigation