Skip to main content
Log in

Effect of Bacillus subtilis and Signaling Molecules on the State of the Pro/Antioxidant System and the Expression of Protective Protein Genes in Potato Plants upon Phytophthorosis and a Moisture Deficit

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of the bacteria Bacillus subtilis in combination with salicylic (SA) and jasmonic (JA) acids on the state of the pro/antioxidant system (the content of hydrogen peroxide, the activity of catalase, peroxidase, superoxide dismutase), the transcriptional activity of the genes PR-1, PR-6, and PR-9, and changes in the leaf proteome in connection with the development of potato resistance to the causative agent of late blight, the oomycete Phytophthora infestans (Mont.) de Bary, upon a moisture deficiency was studied. Plants grown from microtubers were sprayed with a suspension of B. subtilis (108 cells/mL) and a mixture of bacteria with SA (10–6 M), JA (10–7 M), SA + JA. Three days after treatment, the plants were infected with P. infestans (105 spores/mL) and cultivated under artificial soil drought conditions created with a reduction in irrigation. The biochemical parameters in plants were assessed when the soil moisture reached 40 ± 5% of full moisture capacity (7 days after infection). A decrease in the degree of P. infestans development on leaves was detected upon treatment with B. subtilis in combination with SA and JA. The mechanism of the activation of the defense systems of potato plants by bacteria of the genus Bacillus and signaling molecules under drought conditions was associated with the accumulation of H2O2, an increase in the activity of antioxidant enzymes, and the expression of PR-protein genes. In the proteome of potato leaves, differences were found in the presence of 19 polypeptides in the pI range from 4.0 to 9.0 with molecular weights from 30 to 125 kDa. Treatment with B. subtilis in combination with JA most significantly changed the protein spectra in both healthy and infected plants. The revealed differences in the activation of the synthesis of protective proteins under the influence of B. subtilis bacteria and signaling molecules indicate the existence of differential pathways for the formation of resistance to P. infestans in potato plants with their participation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Verma, P., Yadav, A.N., Kumar, V., Singh, D.P., and Saxena, A.K., in Plant–Microbe Interactions in Agro-Ecological Perspectives, Singh, D.P., Singh, H.B., and Prabha, R., Eds., Singapore: Springer, 2017, pp. 543–580.

    Google Scholar 

  2. Burton, W.G., Am. Potato J., 1981, vol. 58, pp. 3–14.

    Article  Google Scholar 

  3. Coleman-Derr, D. and Tringe, S.G., Front. Microbiol., 2014, vol. 5, p. 283. https://doi.org/10.3389/fmicb.2014.00283

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berg, G., Appl. Microbiol. Biotehnol., 2009, vol. 84, pp. 11–18. https://doi.org/10.1007/s00253-009-2092-7

    Article  CAS  Google Scholar 

  5. Burkhanova, G.F., Veselova, S.V., Sorokan’, A.V., Blagova, D.K., Nuzhnaya, T.V., and Maksimov, I.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 3, pp. 346–352. https://doi.org/10.18699/VJ19.561

    Article  CAS  Google Scholar 

  6. Chanda, B., Xia, Y., Mandal, M.K., Sekine, K.T., Gao, Q.M., and Selote, D., Nat. Genet., 2011, vol. 43, pp. 421–427. https://doi.org/10.1038/ng.798

    Article  CAS  PubMed  Google Scholar 

  7. Batool, T., Ali, S., Seleiman, M.F., Naveed, N.H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M.R., Alotaibi, M., Al-Ashkar, I., and Mubushar, M., Sci. Rep., vol. 10, no. 1, pp. 169–175. https://doi.org/10.1002/smll.200400053

  8. Jiang, Z.Y., Woollard, A.C.S., and Wolff, S.P., FEBS Lett., 1990, vol. 268, pp. 69–71.

    Article  CAS  PubMed  Google Scholar 

  9. Bonnet, M., Camares, O., and Veisseire, P., J. Exp. Bot., 2000, vol. 51, pp. 945–953.

    CAS  PubMed  Google Scholar 

  10. Hadwan, M.H. and Abed, H.N., Data Brief, 2016, vol. 6, pp. 194–199. https://doi.org/10.1016/j.dib.2015.12.012

    Article  PubMed  Google Scholar 

  11. Fornera, S. and Walde, P., Anal. Biochem., 2010, vol. 407, no. 2, pp. 293–295. https://doi.org/10.1016/j.ab.2010.07.034

    Article  CAS  PubMed  Google Scholar 

  12. Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  13. Vincent, D., Wheatley, M., and Cramer, G., Electrophoresis, 2006, vol. 27, pp. 1853–1865.

    Article  CAS  PubMed  Google Scholar 

  14. Yarullina, L.G., Kasimova, R.I., Ibragimov, R.I., Akhatova, A.R., Umarov, I.A., and Maksimov, I.V., Appl. Biochem. Microbiol., 2016, vol. 52, no. 1, pp. 71–78. https://doi.org/10.1134/S0003683816010154

    Article  CAS  Google Scholar 

  15. Pfannschmidt, T., Brautigam, K., Wagner, R., Dietzel, L., and Schroter, Y., Ann. Bot., 2009, vol. 103, pp. 599–607. https://doi.org/10.1093/aob/mcn081

    Article  CAS  PubMed  Google Scholar 

  16. Lastochkina, O.V., Aliniaeifard, S., Seifikalhor, M., Yuldashev, R., Pusenkova, L., and Garipova, S., in Wheat Production in Changing Environments. Responses, Adaptation and Tolerance, Hasanuzzaman, M., Nahar, K., and Hossain, A., Eds., Singapore: Springer, 2019, pp. 579–614.

    Google Scholar 

  17. Galvez-Valdivieso, G., Fryer, M.J., Lawson, T., Slattery, K., Truman, W., Smirnoff, N., Asami, T., Davies, W.J., Jones, A.M., and Baker, N.R., Plant Cell, 2009, vol. 21, pp. 2143–2162. https://doi.org/10.1105/tpc.108.061507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smirnoff, N. and Arnaud, D., New Phytol., 2019, vol. 221, no. 3, pp. 1197–1214. https://doi.org/10.1111/nph.15488

    Article  CAS  PubMed  Google Scholar 

  19. Rizhsky, L., Liang, H., and Mittler, R., J. Biol. Chem., 2003, vol. 278, pp. 38921–38925. https://doi.org/10.1074/jbc.M304987200

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, Y. and Huang, B., Crop Sci., 2001, vol. 41, no. 2, pp. 436–442. https://doi.org/10.2135/cropsci2001.412436x

    Article  CAS  Google Scholar 

  21. Pradedova, E.V., Isheeva, O.D., and Salyaev, R.K., Russ. J. Plant Physiol., 2011, vol. 58, no. 1, pp. 36–44. https://doi.org/10.1134/S1021443711010110

    Article  CAS  Google Scholar 

  22. Bakalova, S., Nikolova, A., and Wedera, D., J. Plant Physiol., 2004, vol. 30, pp. 64–77. https://doi.org/10.1556/AAgr.56.2008.2.1

    Article  CAS  Google Scholar 

  23. Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., and Foyer, C.H., J. Exp. Bot., 2005, vol. 56, no. 411, pp. 417–423. https://doi.org/10.1093/jxb/eri039

    Article  CAS  PubMed  Google Scholar 

  24. Rakhmankulova, Z.F., Fedyaev, V.V., Rakhmatulina, S.R., Ivanov, C.P., Gilvanova, I.R., and Usmanov, I.Y., Russ. J. Plant Physiol., 2010, vol. 57, no. 6, pp. 778–783.

    Article  CAS  Google Scholar 

  25. Guan, L.M. and Scandalios, J.G., Free Radic. Biol. Med., 2000, vol. 28, no. 8, pp. 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  26. Maksimov, I.V., Abizgildina, P.P., Sorokan, A.V., and Burkhanova, G.F., Appl. Biochem. Microbiol., 2014, vol. 50, no. 2, pp. 173–178. https://doi.org/10.1134/S0003683814020136

    Article  CAS  Google Scholar 

  27. Sathyamurthy, B., Dama, G., Balasubramanian, A., and Vvs, S., World J. Pharm. Res., 2015, vol. 4, no. 2, pp. 927–939.

    Google Scholar 

  28. Pireivatloum, J., Qasimov, N., and Maralian, H., Afr. J. Biotech., 2010, vol. 9, pp. 36–40.

    Google Scholar 

  29. Fabro, G., Kovács, I., Pavet, V., Szabodos, L., and Alvarez, M.E., Mol. Plant Microb. Intrract., 2004, vol. 17, no. 4, pp. 343–350.

    Article  CAS  Google Scholar 

  30. Lastochkina, O., Seifikalhor, M., Aliniaeifard, S., Baymiev, A., Pusenkova, L., Garipova, S., Kulabuhova, D., and Maksimov, I., Plants (Basel), 2019, vol. 8, no. 4. Article 97. https://doi.org/10.3390/plants8040097

    Article  CAS  PubMed Central  Google Scholar 

  31. Kuluev, B., Mikhaylova, E., Ermoshin, A., Veselova, S., Tugbaeva, A., Gumerova, G., Gainullina, K., and Zaikina, E., J. Plant Physiol., 2019, vol. 242. Article 153033. https://doi.org/10.1016/j.jplph.2019.153033

    Article  CAS  PubMed  Google Scholar 

  32. Gimenez-Ibanez, S. and Solano, R., Front. Plant Sci., 2013, vol. 4, no. 72. https://doi.org/10.3389/fpls.2013.00072

  33. Durrant, W.E. and Dong, X., Annu. Rev. Phytopathol., 2004, vol. 42, pp. 185–209. https://doi.org/10.1146/annurev.phyto.42.040803

    Article  CAS  PubMed  Google Scholar 

  34. Koornneef, A. and Pieterse, C.M.J., Plant Physiol., 2008, vol. 146, pp. 839–844. https://doi.org/10.1104/pp.107.112029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Glazebrook, J., Annu. Rev. Phytopathol., 2005, vol. 43, pp. 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923

    Article  CAS  PubMed  Google Scholar 

  36. Belhaj, K., Lin, B., and Mauch, F., Plant J., 2009, vol. 58, no. 2, pp. 278–298.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out on the equipment of Biomika Core Facility Center (Department of Biochemical Research and Nanobiotechnology of the Agidel Regional Center for Collective Use) and the Unique Scientific Installation Kodink.

Funding

The work was partially funded within the framework of government task (state registration number AAAA-A21-121011990120-7), by the Russian Foundation for Basic Research, and by the Belarusian Republican Foundation for Basic Research (scientific project no. 20-516-00005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Yarullina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarullina, L.G., Tsvetkov, V.O., Burkhanova, G.F. et al. Effect of Bacillus subtilis and Signaling Molecules on the State of the Pro/Antioxidant System and the Expression of Protective Protein Genes in Potato Plants upon Phytophthorosis and a Moisture Deficit. Appl Biochem Microbiol 57, 760–769 (2021). https://doi.org/10.1134/S0003683821060132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821060132

Keywords:

Navigation