Skip to main content
Log in

Effect of Allelic Variants of Aromatic Alcohol Dehydrogenase CADim on Micromorphological and Chemical Tissue Indices in the Spring Bread Wheat Triticum aestivum L.

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The inheritance of allelic variants of aromatic alcohol dehydrogenase CADim (CAD intermediate) and their effect on the severity of plant traits in spring bread wheat (fluorescence of seedling slices, micromorphology, and chemical composition of tissues) were studied. The plants with contrast CADim genotypes (homozygotes +/+ and –/–) were used to study the tissue autofluorescence, micromorphology, and chemical composition. The thickness of the straw walls in the CADim– genotype is higher than that in the CADim+ genotype, which can affect the resistance of wheat plants to lodging. Differences in the chlorophyll content, particularly, in the ratio of chlorophylls A and B, were observed; this probably affects photosynthesis. An increased content of carbonyl groups in the CADim+ genotype, as well as differences in the cinnamon monomers of lignin, were found. It follows from these results that CADim+ and CADim– allelic variants have a significant effect on a number of plant traits and, consequently, that the polymorphism at the CADim locus is functional, which enables its use in breeding and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yoon, J., Choi, H., and An, G., J. Integr. Plant Biol., 2015, vol. 57, pp. 902–912.

    Article  CAS  Google Scholar 

  2. Konovalov, A.A., Shundrina, I.K., and Karpova, E.V., Usp. Sovrem. Biol., 2015, vol. 135, no. 5, pp. 496–513.

    Google Scholar 

  3. Goodwin, T.W. and Mercer, E.I., Introduction to Plant Biochemistry, 2nd ed., Oxford: Pergamon, 1983, vol. 2.

    Google Scholar 

  4. Himi, E., Maekawa, M., and Noda, K., Int. J. Plant Genomics, 2011, vol. 374, article 369460. https://doi.org/10.1155/2011/369460

    Article  CAS  Google Scholar 

  5. Dixon, R.A., Chen, F., Guo, D., and Parvathi, K., Phytochemistry, 2001, vol. 57, pp. 1069–1084. https://doi.org/10.1016/S0031-9422(01)00092-9

    Article  CAS  PubMed  Google Scholar 

  6. Hepworth, D.G. and Vincent, J.F.V., Ann. Bot., 1998, vol. 81, no. 6, pp. 751–759.

    Article  Google Scholar 

  7. Li, X., Yang, Y., Yao, J., Chen, G., Li, X., Zhang, Q., and Wu, C., Plant. Mol. Biol., 2009, vol. 69, no. 6, pp. 685–697.

    Article  CAS  Google Scholar 

  8. Ookawa, T., Inoue, K., Matsuoka, M., Ebitani, T., Takarada, T., Yamamoto, T., Ueda, T., Yokoyama, T., Sugiyama, C., Nakaba, S., Funada, R., Kato, H., Kanekatsu, M., Toyota, K., Motobayashi, T., Vazirzanjani, M., Tojo, S., and Hirasawa, T., Sci. Rep., 2014, vol. 4, article 6567. https://doi.org/10.1038/srep06567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Konovalov, A.A., Shundrina, I.K., Karpova, E.V., El’tsov, I.V., Orlova, E.A., and Goncharov, N.P., Vavilov. Zh. Genet. Selekts., 2017, vol. 21, no. 6, pp. 686–693. https://doi.org/10.18699/VJ17.286

    Article  Google Scholar 

  10. Karpova, E.V., Shundrina, I.K., Orlova, E.A., and Konovalov, A.A., Khim. Rastit. Syr’ya, 2019, no. 4, pp. 87–95. https://doi.org/10.14258/jcprm.2019045238

  11. Jaaska, V., Theor. App. Genet., 1978, vol. 53, no. 5, pp. 209–217.

    Article  CAS  Google Scholar 

  12. Hart, G.E., Gale, M.D., and McIntosh, R.A., Linkage Maps of Triticum aestivum (Hexaploid wheat, 2n = 42, Genomes A, B & D) and T. tauschii (2n = 14, Genome D), in Genetic Maps, 6th ed. Cold Spring Harbor Lab. Press, 1993, pp. 6.204–6.219.

  13. Konovalov, A.A., Shundrina, I.K., Karpova, E.V., Goncharov, N.P., and Kondratenko, E.Ya., Russ. J. Genet., 2016, vol. 52, no. 10, pp. 1110–1116.https://doi.org/10.1134/S1022795416080056

    Article  CAS  Google Scholar 

  14. Konovalov, A.A., Shundrina, I.K., Karpova, E.V., Nefedov, A.A., and Goncharov, N.P., Russ. J. Genet., 2014, vol. 50, no. 11, pp. 1161–1168.https://doi.org/10.1134/S1022795414110052

    Article  CAS  Google Scholar 

  15. Konovalov, A.A., Orlova, E.A., Karpova, E.V., and Shundrina, I.K., Genofond i selektsiya rastenii (Gene Pool and Plant Breeding), Novosibirsk: Inst. Tsitol. Genet. Sib. Otd. Ross. Akad. Nauk, 2020. https://doi.org/10.18699/GPB2020-38

  16. Obolenskaya, A.V., Shchegolev, V.P., Akim, G.L., and Akim, E.L., Prakticheskie raboty po khimii drevesiny i tsellyulozy (Practical Work on the Chemistry of Wood and Cellulose), Moscow: Lesnaya prom-st’, 1965.

  17. Swan, B., Svensk Papperstidn, 1965, vol. 68, no. 22, pp. 791–795.

    CAS  Google Scholar 

  18. Gavrilenko, V.F., Ladygina, M.E., and Khandovina, L.M., Bol’shoi praktikum po fiziologii rastenii (Extended Practical Courses in Plant Physiology), Moscow: Vysshaya shkola, 1975.

  19. Kalabin, G.A., Kanitskaya, L.V., and Kushnarev, D.F., Kolichestvennaya spektroskopiya YaMR prirodnogo organicheskogo syr’ya i produktov ego pererabotki (Quantitative NMR Spectroscopy of Natural Organic Raw Materials and Products of Its Processing), Moscow: Khimiya, 2000.

  20. Belyi, V.A., Alekseev, I.N., and Sadykov, R.A., Izv. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2012, vol. 3, no. 11, pp. 20–26.

    Google Scholar 

  21. del Rio, J.C., Lino, A.G., Colodette, J.L., Lima, C.F., Gutierrez, A., Martinez, A.T., Lu, F., Ralph, J., and Rencoret, J., Biomass Bioenergy, 2015, vol. 81, pp. 322–338.

    Article  CAS  Google Scholar 

  22. Moiseev, I.I., Vestn. Ross. Akad. Nauk, vol. 81, no. 5, pp. 405–413.

  23. Onishchenko, D.V., Reva, V.P., and Voronov, B.A., Dokl. Ross. Akad. S.-Kh. Nauk, 2013, no. 4, pp. 58–60.

  24. Ma, Q.-H., J. Exp. Bot., 2010, vol. 61, no. 10, pp. 2735–2744. https://doi.org/10.1093/jxb/erq107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sukhikh, I.S., Vavilova, V.J., Blinov, A.G., and Goncharov, N.P., Russ. J. Genet., 2021, vol. 57, no. 2, pp. 127–138. https://doi.org/10.1134/S1022795421020101

    Article  CAS  Google Scholar 

  26. Talamond, P., Verdeil, J.L., and Conejero, G., Molecules, 2015, vol. 20, no. 3, pp. 5024–5037. https://doi.org/10.3390/molecules20035024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Donaldson, L., Molecules, 2020, vol. 25, no. 10, p. 2393. https://doi.org/10.3390/molecules25102393

    Article  CAS  PubMed Central  Google Scholar 

  28. Tyutereva, E.V., Dmitrieva, V.A., and Voitsekhovskaya, O.V., S.-Kh. Biol., 2017, vol. 52, no. 5, pp. 843–855. https://doi.org/10.15389/agrobiology.2017.5.843rus

    Article  Google Scholar 

  29. Sakuraba, Y., Balazadeh, S., Tanaka, R., Mueller-Roeber, B., and Tanaka, A., Plant Cell Physiol., 2012, vol. 53, no. 3, pp. 505–517. https://doi.org/10.1093/pcp/pcs006

    Article  CAS  PubMed  Google Scholar 

  30. Ralph, J., Akiyama, T., Kim, H., Lu, F., Schatz, P.F., Marita, J.M., Ralph, S.A., Reddy, M.S.S., Chen, F., and Dixon, R.A., J. Biol. Chem., 2006, vol. 281, p. 8843–8853.

    Article  CAS  Google Scholar 

  31. MM, TakanoT., Hattori, T., Sakamoto, M., and Umezawa, T., Planta, 2017, vol. 246, no. 2, pp. 337–349.https://doi.org/10.1007/s00425-017-2692-x

    Article  CAS  Google Scholar 

  32. Ralph, J., Lapierre, C., and Boerjan, W., Curr. Opin. Biotechnol., 2019, vol. 56, pp. 240–249. https://doi.org/10.1016/j.copbio.2019.02.019

    Article  CAS  PubMed  Google Scholar 

  33. Dauwe, R., Morreel, K., Goeminne, G., Gielen, B., Rohde, A., Van Beeumen, J., Ralph, J., Boudet, A.M., Kopka, J., Rochange, S.F., Halpin, C., Messens, E., and Boerjan, W., Plant J., 2007, vol. 52, no. 2, pp. 263–285.

    Article  CAS  Google Scholar 

  34. Yan, L., Liu, S., Zhao, S., Kang, Y., Wang, D., Gu, T., Xin, Z., Xia, G., and Huang, Y., Physiol. Plant., 2012, vol. 146, no. 4, pp. 375–387.

    Article  CAS  Google Scholar 

  35. Yan, L., Xia, G.-M., Huang, Y.-H., and Zhao, Sh.-Y., Plant Physiol. J., 2013, vol. 49, no. 12, pp. 1433–1441.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Autofluorescence was studied on cross sections of weekly seedlings AT the Center for Collective Use for Microscopic Analysis of Biological Objects of the Siberian Branch of the Russian Academy of Sciences. Spectral and analytical measurements were conducted at the Multi-Access Chemical Research Center of the Siberian Branch of the Russian Academy of Sciences.

Funding

This work was supported by budget projects nos. 0259-2021-0012 (Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences) and 0302-2020-0005 (Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences), as well as by the Russian Foundation for Basic Research (regional project no. 19-44-540003 r_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Konovalov.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalov, A.A., Karpova, E.V., Shundrina, I.K. et al. Effect of Allelic Variants of Aromatic Alcohol Dehydrogenase CADim on Micromorphological and Chemical Tissue Indices in the Spring Bread Wheat Triticum aestivum L.. Appl Biochem Microbiol 57, 521–532 (2021). https://doi.org/10.1134/S0003683821040086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821040086

Keywords:

Navigation