Skip to main content
Log in

Inheritance and phenotype expression of functional and null alleles of aromatic alcohol dehydrogenase (CAD) in diploid wheats

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Functional F and null 0 alleles of the CAD1 (Aadh1) gene, which controls the biosynthesis of aromatic alcohol dehydrogenase, were studied in hybrids of the diploid wheat T. monococcum L. and Triticum sinskajae A. Filat. et Kurk. The gene CAD1 is located in chromosome 5A and is linked with the awnless gene awnS (La) with a recombination frequency of about 32%. Plants with genotypes FF, F0, and 00 were significantly different in the height and mechanical strength of the stalk (culm). The elastic limit of the culm tissues of plants FF was considerably higher than in 00 plants. F0 heterozygotes had intermediate values. The thickness of the wall of the sclerenchyma was thinner in plants with genotype 00. The chemical structure of lignin of plants with the functional CAD allele contained units of a phloroglucinol series missing in the mutant plants. The CAD genotypes had no effect on the relative content of cellulose and lignin in stalks of diploid wheat and insignificantly influenced the ratio of H: G: S units in the lignin structure, as well as some components of extractives. IR-spectroscopy found differences in the distribution of components of cell walls and extractives on the outer and inner surfaces of the culm. The results are discussed in relation to the applied aspects of the use of herbal products. Samples of diploid wheat with various genotypes of CAD can be used as model objects in breeding and genetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, J.-K., Li, X., Stout, J., and Chapple, C., Independent origins of syringyl lignin in vascular plants, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 22, pp. 7887–7892.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lignins: Occurrence, Formation, Structure and Reactions, Sarkanen, K.V. and Ludwig, C.H., Eds., New York: Wiley, 1971.

    Google Scholar 

  3. Enzyme Nomenclature, 2014. http://www.chem.qmul.ac.uk/iubmb/enzyme/

  4. Jorgenson, L.R., Brown midrib in maize and its linkage relations, Agron. J. (J. Am. Soc. Agron.), 1931, vol. 23, no. 7, pp. 549–557.

    Article  Google Scholar 

  5. Halpin, C., Holt, K., Chojecki, J., et al., Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene, Plant J., 1998, vol. 14, no. 5, pp. 545–553.

    Article  CAS  PubMed  Google Scholar 

  6. Sattler, S.E., Saathoff, A.J., Haas, E.J., et al., Nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype, Plant Physiol., 2009, vol. 150, pp. 584–595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Porter, K.S., Axtell, J.D., Lechtenberg, V.L., and Colenbrander, V.F., Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of Sorghum, Crop Sci., 1978, vol. 18, pp. 205–208.

    Article  CAS  Google Scholar 

  8. Bucholtz, D.L., Cantrell, R.P., Axtell, J.D., and Lechtenberg, V.L., Lignin biochemistry of normal and brown midrib mutant Sorghum, J. Agric. Food Chem., 1980, vol. 28, pp. 1239–1241.

    Article  CAS  Google Scholar 

  9. Pillonel, Ch., Mulder, M.M., Boon, J.J., et al., Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench, Planta, 1991, vol. 185, no. 4, pp. 538–544.

    Article  CAS  PubMed  Google Scholar 

  10. Cherney, J.H., Axtell, D.J., Hassen, M.M., and Anliker, K.S., Forage quality characterization of a chemically induced bmr mutant in pearl millet, Crop Sci., 1988, vol. 28, no. 5, pp. 783–787.

    Article  Google Scholar 

  11. Cherney, D.J., Patterson, J.A., and Johnson, K.D., Digestibility and feeding value of pearl millet as influenced by the brown-midrib, low-lignin trait, J. Anim. Sci., 1990, vol. 68, pp. 4345–4351.

    CAS  PubMed  Google Scholar 

  12. Zhang, K., Qian, Q., Huang, Z., et al., Gold hull and internode2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice, Plant Physiol., 2006, vol. 140, no. 3, pp. 972–983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. MacKay, J., O’Malley, D.M., Presnell, T., et al., Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 8255–8260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wu, R.L. and Remington, D.L., Mackay, J.J., et al., Average effect of a mutation in lignin biosynthesis in loblolly pine, Theor. Appl. Genet., 1999, vol. 99, pp. 705–710.

    Article  CAS  PubMed  Google Scholar 

  15. Halpin, C., Knight, M.E., Foxon, G.A., et al., Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase, Plant J., 1994, vol. 6, no. 3, pp. 339–350.

    Article  CAS  Google Scholar 

  16. Zhao, Q., Tobimatsu, Y., Zhou, R., et al., Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 33, pp. 13660–13665.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sibout, R., Eudes, A., Mouille, G., et al., Cinnamyl alcohol dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis, Plant Cell, 2005, vol. 17, no. 7, pp. 2059–2076.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lapierre, C., Pilate, G., Pollet, B., et al., Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins, Phytochemistry, 2004, vol. 65, no. 3, pp. 313–321.

    Article  CAS  PubMed  Google Scholar 

  19. Damiani, I., Morreel, K., Danoun, S., et al., Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem, Plant. Mol. Biol., 2005, vol. 59, no. 5, pp. 753–769.

    Article  CAS  PubMed  Google Scholar 

  20. Dalimova, G.N. and Abduazimov, Kh.A., Lignins of herbal plants, Khim. Prir. Soedin., 1994, no. 2, pp. 160–177.

    Google Scholar 

  21. Kalabin, G.A., Kanitskaya, L.V., and Kushnarev, D.F., Kolichestvennaya spektroskopiya YaMR prirodnogo organicheskogo syr’ya i produktov ego pererabotki (Quantitative NMR Spectroscopy of Natural Organic Matter and Its Transformation Products), Moscow: Khimiya, 2000.

    Google Scholar 

  22. Jaaska, V., NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their relatives on the origin and phylogeny of polyploid wheats, Theor. Appl. Genet., 1978, vol. 53, no. 3, pp. 209–217.

    Article  CAS  PubMed  Google Scholar 

  23. Vapa, L. and Hart, G.E., Genetic variation in enzyme phenotypes among Yugoslav wheat cultivars, Plant Breed., 1987, vol. 98, no. 4, pp. 273–280.

    Article  Google Scholar 

  24. Hart, G.E., Genetic control of NADH dehydrogenase-1 and aromatic alcohol dehydrogenase-2 in hexaploid wheat, Biochem. Genet., 1987, vol. 25, nos. 11–12, pp. 837–846.

    Article  CAS  PubMed  Google Scholar 

  25. Schlegel, R. and Melz, G., Genetic linkage map of rye (Secale cereal), in Genetic Maps, Cold Spring Harbor Lab., 1993, 6th ed., pp. 6.235–6.255

    Google Scholar 

  26. Korzun, V., Malyshev, S., Voylokov, A.V., and Börner, A., A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci, Theor. Appl. Genet., 2001, vol. 102, pp. 709–717.

    Article  CAS  Google Scholar 

  27. Konovalov, A.A., Moiseeva, E.A., and Goncharov, N.P., Analysis of the inheritance and linkage of certain traits in chromosome 5R in rye, Secale cereale L., Sel. Semenovod. (Kiev), 2008, no. 96, pp. 106–112.

    Google Scholar 

  28. Konovalov, A.A., Moiseeva, E.A., Goncharov, N.P., and Kondratenko, E.Ya., The order of the bs, Skdh, and Aadh1 genes in chromosome 5R of rye Secale cereale L., Russ. J. Genet., 2010, vol. 46, no. 6, pp. 666–671.

    Article  CAS  Google Scholar 

  29. Konovalov, A.A., Moiseeva, E.A., Kondratenko, E.Ya., and Goncharov, N.P., Study of null alleles of aromatic dehydrogenase genes in rye, Secale cereale L. and einkorn wheat, Triticum monococcum L., in V s”ezd VOGIS: Tezisy (5th Conference of Vavilov Society of Geneticists and Breeders: Proceedings), Moscow, 2009, part 1, p. 246.

    Google Scholar 

  30. Konovalov, A.A., Silkova, O.G., Shchapova, A.I., et al., Enzyme polymorphism in genetic collections of the rye-wheat substitution lines and the accessions of Tritordeum with different genome ratios, Inf. Vestn. Vavilovskogo Ova. Genet. Sel., 2008, vol. 12, no. 4, pp. 691–697.

    Google Scholar 

  31. Glennie, D.W. and McCarthy, J.L., Chemistry of lignin, Pulp and Paper Science and Technology, Libby, C.E., Ed., New York: McGraw-Hill, 1962.

    Google Scholar 

  32. Goncharov, N.P., Sravnitel’naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheats and Their Relatives), Novosibirsk: Sib. Univ. Izd., 2002.

    Google Scholar 

  33. Goncharov, N.P., Sravnitel’naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheats and Their Relatives), Novosibirsk: Geo, 2012, 2nd ed.

    Google Scholar 

  34. Goncharov, N.P., Kondratenko, E.Ja., Bannikova, S.V., et al., Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession, Russ. J. Genet., 2007, vol. 43, no. 11, pp. 1248–1256.

    Article  CAS  Google Scholar 

  35. Kuspira, J., Maclagan, J., Bhambhani, R.N., et al., Genetic and cytogenetic analyses of the A genome of Triticum monococcum L.: 5. Inheritance and linkage relationships of genes determining the expression of 12 qualitative characters, Genome, 1989, vol. 32, no. 5, pp. 869–881.

    Article  Google Scholar 

  36. Polyakova, E.V., Null alleles of genes controlling the synthesis of enzymes: distribution in nature and biological polymorphism, Usp. Sovrem. Boil., 1991, vol. 111, no. 3, pp. 339–352.

    CAS  Google Scholar 

  37. Bergius, F., The use of timber for the production of food, alcohol and glucose, Priroda, 1934, no. 3, pp. 79–83.

    Google Scholar 

  38. Huber, G.V. and Dale, B.E., Grassoline: biofuels beyond corn, Sci. Am., 2009, no. 9, pp. 27–33.

    Google Scholar 

  39. Moiseev, I.I., Bacterial synthesis in fuels and petrochemical industry, Vestn. Ross. Akad. Nauk, 2011, vol. 81, no. 5, pp. 405–413.

    CAS  Google Scholar 

  40. Ma, Q.-H., Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat, J. Exp. Bot., 2010, vol. 61, no. 10, pp. 2735–2744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Konovalov.

Additional information

Original Russian Text © A.A. Konovalov, I.K. Shundrina, E.V. Karpova, A.A. Nefedov, N.P. Goncharov, 2014, published in Genetika, 2014, Vol. 50, No. 11, pp. 1310–1318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalov, A.A., Shundrina, I.K., Karpova, E.V. et al. Inheritance and phenotype expression of functional and null alleles of aromatic alcohol dehydrogenase (CAD) in diploid wheats. Russ J Genet 50, 1161–1168 (2014). https://doi.org/10.1134/S1022795414110052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414110052

Keywords

Navigation