Skip to main content
Log in

Changes in the Free Fatty-Acid Profile in the Liver and Brain of Mice Receiving Nanolipid Complexes

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Gas chromatography was used to study changes in the fatty-acid (FA) profile of the liver and brain lipids in six groups of mice that received nanoliposomal complexes of different compositions added to drinks that replaced water in a long-term diet (3 months). The components of the six nanoliposomal types included clove essential oil (CEO), fish oil (FO), and sodium caseinate (Na-Cas), along with phosphatidylcholine (PC). It was found that compound nanoliposomal complexes that contain both essential polyunsaturated free fatty acids (PUFAs) and CEO natural antioxidant, along with Na-Cas food protein, can modify the liver and brain lipid profiles and increase the amount of decosahexaenoic acid (DHA) while considerably reducing the Σ omega-6/Σ omega-3 PUFA ratio. Such changes may increase resistance to inflammatory processes and reduce the risk of cancer and neuropsychiatric diseases. The obtained data may be used to develop new PUFA delivery systems based on PC liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Saini, R.K. and Keum, Y.S., Life Sci., 2018, vol. 203, no. 1, pp. 255–267.

    Article  CAS  Google Scholar 

  2. Natividad, R., Kim, Eunjio., Fan, Yang-Yi., and Chapkin, RobertS., Mol. Aspects Med., 2018, vol. 64, no. 1, pp. 79–91.

    Article  Google Scholar 

  3. Mensink, R.P., Zock, P.L., Kester, A.D., and Katan, M.B., Am. J. Clin. Nutr., 2003, vol. 77, no. 5, pp. 1146–1155.

    Article  CAS  Google Scholar 

  4. Calder, P.C., Eur. J. Pharmacol., 2011, vol. 668, suppl. 1, pp. 50– 58.

    Article  Google Scholar 

  5. Banni, S. and Di Marzo, V., Mol. Nutr. Food Res., 2010, vol. 54, no. 1, pp. 82–92.

    Article  CAS  Google Scholar 

  6. Wassall, S.R. and Stillwell, W., Biochim. Biophys. Acta, 2009, vol. 1788, no. 1, pp. 24–32.

    Article  CAS  Google Scholar 

  7. Candela, G.C., Bermejo, L.L.M., and Loria, K.V., Nutr. Hos., vol. 26, no. 2, pp. 323 –330.

  8. Maksimov, V.I., in Pishcha i degenerativnye bolezni (Food and Degenerative Diseases), Moscow: Miklosh, 2004, p. 232.

  9. Semenova, M.G. and Dickinson, E., in Biopolymers in Food Colloids: Thermodynamics and Molecular Interactions, Leiden: Brill, 2010, p. 458.

    Book  Google Scholar 

  10. McClements, D.J., Nanoparticle- and Microparticlebased Delivery Systems. Encapsulation, Protection and Release of Active Compounds, London: Taylor and Francis Group, 2015, p. 548.

    Google Scholar 

  11. Semenova, M.G., Antipova, A.S., Zelikina, D.V., Martirosova, E.I., Plashchina, I.G., Palmina, N.P., Binyukov, V.I., Bogdanova, N.G., Kasparov, V.V., Shumilina, E.A., and Ozerova, N.S., Food Res. Int., 2016, vol. 88, no. 1, pp. 70–78.

    Article  CAS  Google Scholar 

  12. Semenova, M.G., Zelikina, D.V., Antipova, A.S., Martirosova, E.I., Grigorovich, N.V., Obushaeva, R.V., Shumilina, E.A., Ozerova, N.S., Palmina, N.P., Maltseva, E.L., Kasparov, V.V., Bogdanova, N.G., and Krivandin, A.V., Food Hydrocolloids, 2016, vol. 52, no. 1, pp. 144–160.

    Article  CAS  Google Scholar 

  13. Sazhina, N.N., Antipova, A.S., Semenova, M.G., and Palmina, N.P., Russ. J. Bioorg. Chem., 2019, vol. 45, no. 2, pp. 34–41.

    Article  CAS  Google Scholar 

  14. Semenova, M.G., Antipova, A.S., Pal’mina, N.P., Misharina, T.A., Martirosova, E.I., Zelikina, D.V., Krikunova, N.I., Kasparov, V.V., Binyukov, V.I., Bogdanova, N.G., Chebotarev, S.A., and Gureeva, M.D., Khim. Fiz., 2019, vol. 38, no. 12, pp. 38–43.

    Google Scholar 

  15. Semenova, M.G., Zelikina, D.V., Antipova, A.S., Martirosova, E.I., Palmina, N.P., Chebotarev, S.A., Samuseva, Y.V., Bogdanova, N.G., and Kasparov, V.V., Food Hydrocolloids, 2020, vol. 105, no. 1, p. 105803.

    Article  Google Scholar 

  16. Semenova, M.G., Antipova, A.S., Anokhina, M.S., Belyakova, L.E., Polikarpov, Y.N., Gigorovich, N.V., et al., Food Function, 2012, vol. 3, no. 3, pp. 271–282.

    Article  CAS  Google Scholar 

  17. Semenova, M.G., Antipova, A.S., Belyakova, L.E., Polikarpov, Y.N., Anokhina, M.S., Grigorovich, N.V., et al., Food Hydrocolloids, 2014, vol. 42, no. 1, pp. 149–161.

    Article  CAS  Google Scholar 

  18. Keits, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam: Elsevier, 1972.

    Google Scholar 

  19. Misharina, T.A., Terenina, M.B., and Krikunova, N.I., Appl. Biochem. Microbiol., 2017, vol. 53, no. 5, pp. 600–610.

    Article  CAS  Google Scholar 

  20. Burlakova, E.B., Misharina, T.A., Fatkullina, L.D., Terenina, M.B., Krikunova, N.I., Yerokhin, V.N., and Vorobieva, A.K., Dokl. Biochem. Biophys., 2011, vol. 437, pp. 80–83.

    Article  CAS  Google Scholar 

  21. Gao, F., Kim, H.W., Igarashi, M., Kiesewetter, D., Chang, L., Ma, K., and Rapoport, S.I., Biochim. Biophys. Acta, 2011, vol. 1811, nos. 7–8, pp. 484–489.

    Article  CAS  Google Scholar 

  22. Igarashi, M., Chang, L., Ma, K., and Rapoport, S.I., Prostaglandins, Leukotrienes Essent. Fatty Acids, 2013, vol. 83, no. 2, pp. 403–412.

    Article  Google Scholar 

  23. McCendie, H., Chevalier, L., Roberge, C., and Plourde, M., Progr. Neuropsychopharmacol. Biol. Psychiatry, 2019, vol. 94, no. 1, pp. 1–12.

    Google Scholar 

  24. Hosomi, R., Fukunaga, K., Nagao, T., Shiba, S., Miyauchi, K., Yoshida, M., and Takahashi, K., J. Oleo Sci., 2019, vol. 68, no. 8, pp. 781–792.

    Article  CAS  Google Scholar 

  25. Russo, G.L., Biochem. Pharmacol., 2009, vol. 77, no. 6, pp. 937–46.

    Article  CAS  Google Scholar 

  26. Soderberg, M., Edlund, C., Kristensson, K., and Dallner, G., Lipids, 1991, vol. 26, no. 6, pp. 421–425.

    Article  CAS  Google Scholar 

  27. JM, GuesnetP., Prog. Lipid Res., 2006, vol. 45, no. 3, pp. 203–36.

    Article  Google Scholar 

  28. Mocking, R.J.T., Assies, J., Ruhe, H.G., and Schene, A.H., J. Inherited Metab. Dis., 2018, vol. 41, no. 4, pp. 597–611.

    Article  CAS  Google Scholar 

  29. Greupner, T., Kutzner, L., Nolt, F., Strangmann, A., Heike, KohrsH., Hahn, A., Schebb, N.H., and Schuchardt, J.P., Food Funct., 2018, vol. 9, no. 3, pp. 1587–1600.

    Article  CAS  Google Scholar 

  30. Valenzuela, R., Espinosa, A., Llanos, P., Hernandez-Rodas, M.C., Barrera, C., Vergara, D., Romero, N., Pérez, F., Ruza, M., and Videlae, L.A., Food Funct., 2016, vol. 7, no. 1, pp. 140–150.

    Article  CAS  Google Scholar 

  31. van Wijk, N., Balvers, M., Cansev, M., Maher, T.J., Sijben, J.W.C., and Broersen, L.M., Lipids, 2016, vol. 51, no. 7, pp. 833–846.

    Article  CAS  Google Scholar 

  32. Lim, S.Y. and Suzuki, H., Int. J. Vitam. Nutr. Res., 2002, vol. 72, no. 1, pp. 77–84.

    Article  CAS  Google Scholar 

  33. Valentini, K.J., Wiesinger, C.A.P., and Fenton, J.A., Int. J. Food Sci. Nutr., 2018, vol. 69, no. 6, pp. 705–717.

    Article  CAS  Google Scholar 

  34. Simopoulos, A.P., Exp. Biol. Med., 2008, vol. 233, no. 6, pp. 674–688.

    Article  CAS  Google Scholar 

  35. Mocking, R.J.T., Assies, J., Ruhe, H.G., and Schene, A.H., Inherited Metab. Dis., vol. 41, no. 4, pp. 597–611.

  36. Joffre, C., Rey, C., and Laye, S., Front. Pharmacol., 2019, vol. 10, no. 9, pp. 1–16.

    Article  Google Scholar 

  37. Dydjow-Bendek, D. and Zagozdzon, P., In Vivo, 2020, vol. 34, no. 1, pp. 423–431.

    Article  Google Scholar 

  38. Schmitz, G. and Ecker, J., Progr. Lipid Res., 2008, vol. 47, no. 2, pp. 147–155.

    Article  CAS  Google Scholar 

  39. Bali´, A., Vlaši´, D., Žužul, K., Marinovi´, B., and Bukvi´ Mokos, Z., Int. J. Mol. Sci., 2020, vol. 21, no. 2, pp. 741–767.

    Article  Google Scholar 

  40. Karkishchenko, N.N. and Gracheva, S.V., M.: Profile, 2010, 358 p.

Download references

Funding

The study was conducted as State Assignment no. 1201253307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Palmina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The studies were conducted in compliance with the principles of Good Laboratory Practices of the Russian Federation and according to the rules adopted by European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes (ETS 123), Strasburg, 1986, in compliance with the written protocol and in accordance with the standard operating procedures (SOPs) and Guidance on Laboratory Animals and Alternative Models in Biomedical Technologies. The experiments did not involve human subjects.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmina, N.P., Misharina, T.A., Krikunova, N.I. et al. Changes in the Free Fatty-Acid Profile in the Liver and Brain of Mice Receiving Nanolipid Complexes. Appl Biochem Microbiol 57, 250–256 (2021). https://doi.org/10.1134/S0003683821020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821020101

Keywords:

Navigation