Skip to main content

Advertisement

Log in

Study of the Effect of Lower Eukaryotes on Tacrolimus (FK-506) Biosynthesis by the Streptomyces tsukubensis Strain VKM Ac-2618D

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of inactivated yeast cells, individual components of the yeast cells, and the inactivated biomass of filamentous fungi (micromycetes) of various taxonomic positions on the biosynthesis of immunosuppressant tacrolimus (FK-506) by Streptomyces tsukubensis VKM Ac-2618D cells has been studied. The fractions of soluble and insoluble components of yeast cells positively influenced tacrolimus biosynthesis; the FK-506 concentrations reached 447.1± 22.4 mg/L and 514.3 ± 25.7 mg/L, respectively. The insoluble cell components, including the cell walls and cytoplasmic membranes, had a greater effect than other fractions. The presence of whole baker’s yeast cells and the filamentous fungus Aspergillus ochraceus biomass in the complex nutrient medium stimulated tacrolimus production by S. tsukubensis VKM Ac-2618D (667.5 ± 33.4 mg/L and 633.5 ± 31.7 mg/L, respectively). The biomass of deuteromycete Curvularia lunata had no effect on FK‑506 biosynthesis (288.4 ± 14.4 mg/L). Conversely, the biomass of the Gongronella butleri fungus fully inhibited growth and tacrolimus production in S. tsukubensis. The increase in FK-506 biosynthesis in the presence of the cells of the tested micromycetes is more likely due to the polysaccharide composition of their cell walls than to the ergosterol content. The results expand the knowledge of S. tsukubensis physiology and may be useful for the development of the biotechnological process of tacrolimus production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Barreiro, C. and Martinez-Castro, M., Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506), Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 2, pp. 497–507. https://doi.org/10.1007/s00253-013-5362-3

    Article  CAS  PubMed  Google Scholar 

  2. Trede, N.S., Warwick, A.B., Rosoff, P.M., et al., Tacrolimus (FK506) in allogeneic bone marrow transplantation for severe aplastic anemia following orthotopic liver transplantation, Bone Marrow Transplant., 1997, vol. 20, no. 3, pp. 257–260. https://doi.org/10.1038/sj.bmt.1700872

    Article  CAS  PubMed  Google Scholar 

  3. McCormack, P.L. and Keating, G.M., Tacrolimus: in heart transplant recipients, Drugs, 2006, vol. 66, no. 17, pp. 2269–2279. https://doi.org/10.2165/00003495-200666170-00010

    Article  CAS  PubMed  Google Scholar 

  4. Remitz, A. and Reitamo, S., Long-term safety of tacrolimus ointment in atopic dermatitis, Expert Opin. Drug Saf., 2009, vol. 8, no. 4, pp. 501–506. https://doi.org/10.1517/14740330902969441

    Article  CAS  PubMed  Google Scholar 

  5. Akimoto, K., Kusunoki, Y., Nishio, S., et al., Safety profile of tacrolimus in patients with rheumatoid arthritis, Clin. Rheumatol., 2008, vol. 27, no. 11, pp. 1393–1397. https://doi.org/10.1007/s10067-008-0931-z

    Article  PubMed  Google Scholar 

  6. Karpas, A., Lowdell, M., Jacobson, S.K., and Hill, F., Inhibition of human immunodeficiency virus and growth of infected T cells by the immunosuppressive drugs cyclosporin A and FK 506, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 17, pp. 8351–8355. https://doi.org/10.1073/pnas.89.17.8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reis, S.A., Moussatché, N., and Damaso, C.R.A., FK506, a secondary metabolite produced by Streptomyces, presents a novel antiviral activity against Orthopoxvirus infection in cell culture, J. Appl. Microbiol., 2006, vol. 100, no. 6, pp. 1373–1380. https://doi.org/10.1111/j.1365-2672.2006.02855.x

    Article  CAS  PubMed  Google Scholar 

  8. Benson, A., Barrett, T., Sparberg, M., and Buchman, A.L., Efficacy and safety of tacrolimus in refractory ulcerative colitis and Crohn’s disease: a single-center experience, Inflamm. Bowel Dis., 2008, vol. 14, no. 1, pp. 7–12. https://doi.org/10.1002/ibd.20263

    Article  PubMed  Google Scholar 

  9. Periyasamy, S., Warrier, M., Tillekeratne, M.P.M., et al., The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms, Endocrinology, 2007, vol. 148, no. 10, pp. 4716–4726. https://doi.org/10.1210/en.2007-0145

    Article  CAS  PubMed  Google Scholar 

  10. Arndt, C., Cruz, M.C., Cardenas, M.E., and Heitman, J., Secretion of FK506/FK520 and rapamycin by Streptomyces inhibits the growth of competing Saccharomyces cerevisiae and Cryptococcus neoformans,Microbiology, 1999, vol. 145, pp. 1989–2000. https://doi.org/10.1099/13500872-145-8-1989

    Article  CAS  PubMed  Google Scholar 

  11. Klettner, A. and Herdegen, T., FK506 and its analogs—therapeutic potential for neurological disorders, Curr. Drug Targets CNS Neurol. Disord., 2003, vol. 2, no. 3, pp. 153–162. https://doi.org/10.2174/1568007033482878

    Article  CAS  PubMed  Google Scholar 

  12. Konofaos, P. and Terzis, J.K., FK506 and nerve regeneration: past, present, and future, J. Reconstr. Microsurg., 2013, vol. 29, no. 3, pp. 141–148. https://doi.org/10.1055/s-0032-1333314

    Article  PubMed  Google Scholar 

  13. Harding, M.W., Galat, A., Uehling, D.E., and Schreiber, S.L., A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase, Nature, 1989, vol. 341, no. 6244, pp. 758–760. https://doi.org/10.1038/341758a0

    Article  CAS  PubMed  Google Scholar 

  14. Foor, F., Parent, S.A., Morin, N., et al., Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast, Nature, 1992, vol. 360 (6405, pp. 682–684. https://doi.org/10.1038/360682a0

  15. Kunz, J., Hall, M.N., and Cyclosporin, A., FK506 and rapamycin: more than just immunosuppression, Trends Biochem. Sci., 1993, vol. 18, no. 9, pp. 334–338. https://doi.org/10.1016/0968-0004

  16. Rusnak, F. and Mertz, P., Calcineurin: form and function, Physiol. Rev., 2000, vol. 80, no. 4, pp. 1483–1521. https://doi.org/10.1152/physrev.2000.80.4.1483

    Article  CAS  PubMed  Google Scholar 

  17. Ban, Y.H., Park, S.R., and Yoon, Y.J., The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects, J. Ind. Microbiol. Biotechnol., 2016, vol. 43, nos. 2–3, pp. 389–400. https://doi.org/10.1007/s10295-015-1677-7

    Article  CAS  PubMed  Google Scholar 

  18. Fu, L.F., Tao, Y., Jin, M.Y., and Jiang, H., Improvement of FK506 production by synthetic biology approaches, Biotechnol. Lett., 2016, vol. 38, no. 12, pp. 2015–2021. https://doi.org/10.1007/s10529-016-2202-4

    Article  CAS  PubMed  Google Scholar 

  19. Ordóñez-Robles, M., Santos-Beneit, F., Albillos, S.M., et al., Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources, Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 22, pp. 8181–8195. https://doi.org/10.1007/s00253-017-8545-5

    Article  CAS  PubMed  Google Scholar 

  20. Turło, J.Z., Gutkowska, B., and Gajzlerska, W., Submerged cultivation of Streptomyces tsukubaensis in media composed of waste products of food industry, Acta Pol. Pharm., 2006, vol. 63, no. 5, pp. 463–465.

    PubMed  Google Scholar 

  21. Glagolev, V.I., Dzhavakhiya, V.V., Popova, E.D., and Voinova, T.M., Development of a highly productive strain of the producer of the immunosuppressant tacrolimus and optimization of the fermentation medium for its cultivation, Mezhdunar. Nauchno-Issled. Zh., 2017, vol. 11, no. 65, pp. 64–70.

  22. Martínez-Castro, M., Salehi-Najafabadi, Z., Romero, F., et al., Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer Streptomyces tsukubaensis,Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 5, pp. 2139–2152.

    Article  PubMed  Google Scholar 

  23. Poshekhontseva, V.Yu., Fokina, V.V., Sukhodol’skaya, G.V., et al., Effect of starch composition on the biosynthesis of immunosuppressant tacrolimus (FK‑506) by Streptomyces tsukubaensis VKM Ac-2618D strain, 2618, Appl. Biochem. Microbiol., 2019, vol. 55, no. 5, pp. 534–543.

    Article  CAS  Google Scholar 

  24. Nielsen, J.B., Hsu, M-Jo., Byrne, K.M., and Kaplan, L., Biosynthesis of the immunosuppressant immunomycin: the enzymology of pipecolate incorporation, J. Biochem., 1991, vol. 30, no. 23, pp. 5789–5796. https://doi.org/10.1021/bi00237a023

    Article  CAS  Google Scholar 

  25. Turlo, J., Gajzlerska, W., Klimaszewska, M., et al., Enhancement of tacrolimus productivity in Streptomyces tsukubaensis by the use of novel precursors for biosynthesis, Enzyme Microb. Technol., 2012, vol. 51, nos. 6–7, pp. 32–39. https://doi.org/10.1016/j.enzmictec.2012.08.008

    Article  CAS  Google Scholar 

  26. Sang Joon, M., Sung-Kwon, L., Ying-Yu, J., and Joo-Won, S., Improvement of FK506 production in the high-yielding strain Streptomyces sp. RM7011 by engineering the supply of allylmalonyl-CoA through a combination of genetic and chemical approach, J. Microbiol. Biotechnol., 2016, vol. 26, no. 2, pp. 233–240. https://doi.org/10.4014/jmb.1506.06032

    Article  CAS  Google Scholar 

  27. Ordóñez-Robles, M., Rodríguez-García, A., and Martin, J.F., Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis, Microbiol. Res., 2018, vol. 217, pp. 14–22. https://doi.org/10.1016/j.micres.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  28. Onyewu, C., Blankenship, J.R., Del Poeta, M., and Heitma, J., Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei,Antimicrob. Agents Chemother., 2003, vol. 47, no. 3, pp. 956–964. https://doi.org/10.1128/aac.47.3.956-964.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh, N. and Heitman, J., Antifungal attributes of immunosuppressive agents: new paradigms in management and elucidating the pathophysiologic basis of opportunistic mycoses in organ transplant recipients, Transplantation, 2004, vol. 77, no. 6, pp. 795–800. https://doi.org/10.1097/01.TP.0000117252.75651.D6

    Article  CAS  PubMed  Google Scholar 

  30. Steinbach, W.J., Schell, W.A., Blankenship, J.R., Onyewu, C., et al., In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigates,Antimicrob. Agents Chemother., 2004, vol. 48, no. 5, pp. 1664–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kino, T., Hatanaka, H., Hashimoto, M., et al., FK506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics, J. Antibiot. (Tokyo), 1987, vol. 40, no. 9, pp. 1249–1255. https://doi.org/10.7164/antibiotics.40.1249

    Article  CAS  Google Scholar 

  32. Vaid, S. and Pradeep, N., Process for producing tacrolimus (FK506) using vegetable oil as sole source of carbon, US Patent No. 0142424A1, 2007.

  33. Sukhodol’skaya, G.V., Lobastova, T.G., Gulevskaya, S.A., et al., Method for producing tacrolimus by microbiological synthesis, RF Patent No. 2495937, 2013.

  34. Semenov, S.M., Laboratornye sredy dlya aktinomitsetov i gribov. Spravochnik (Laboratory Media for Actinomycetes and Fungi: A Handbook), Moscow: Agropromizdat, 1990.

  35. Xie, X. and Lipke, P.N., On the evolution of fungal and yeast cell walls, Yeast, 2010, vol. 27, no. 8, pp. 479–488. https://doi.org/10.1002/yea.1787

    Article  CAS  PubMed  Google Scholar 

  36. Unrod, V.I. and Solodovnik, T.V., Chitin- and chitosan-containing complexes from filamentous fungi: preparation, properties, application. Biopolym. Cell, 2001, vol. 5, no. 17, no. 6, pp. 526–533. https://doi.org/10.7124/bc.0005DB

  37. Poshekhontseva, V.Y., Bragin, E.Y., Fokina, V.V., et al., Draft genome sequence of FK506-producing Streptomyces tsukubensis strain VKM Ac-2618D, Microbiol. Resour. Announc., 2019, vol. 8, no. 24, e00510-19. https://doi.org/10.1128/MRA.00510-19

    Article  PubMed  PubMed Central  Google Scholar 

  38. Babu, A.G., Kim, S.W., Adhikari, M., et al., A new record of Gongronella butleri isolated in Korea, Mycobiology, 2015, vol. 43, no. 2, pp. 166–169. https://doi.org/10.5941/MYCO.2015.43.2.166

    Article  PubMed  PubMed Central  Google Scholar 

  39. Papineau, A.M., Hoover, D.G., Knorr, D., and Farkas, D.F., Antimicrobial effect of water-soluble chitosans with hydrostatic pressure, Food Biotechnol., 1991, vol. 5, no. 1, pp. 45–57. https://doi.org/10.1080/08905439109549790

    Article  CAS  Google Scholar 

  40. Chen, C.Y. and Chung, Y.C., Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis,J. Appl. Oral. Sci., 2012, vol. 20, no. 6, pp. 620–627. https://doi.org/10.1590/s1678-77572012000600006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, T., Zivanovic, S., Draughon, F.A., et al., Physicochemical properties and bioactivity of fungal chitin and chitosan, J. Agric. Food Chem., 2005, vol. 53, no. 10, pp. 3888–3894. https://doi.org/10.1021/jf048202s

    Article  CAS  PubMed  Google Scholar 

  42. Badawy, M.E.I. and Rabea, E.I., A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection, Int. J. Carbohydr. Chem., 2011, vol. 2011, pp. 1–29. https://doi.org/10.1155/2011/460381

    Article  CAS  Google Scholar 

  43. Lippert Hirsch, A., Industrial aspects of Vitamin D, in Vitamin D, Feldman, D., Wesley Pike, J., and Adams, J.S., Eds., 3rd ed., Boston, USA: Academic, 2011, pp. 73–93.

    Google Scholar 

  44. Rasmussen, B., Fletcher, I.R., Brocks, J.J., and Kilburn, M.R., Reassessing the first appearance of eukaryotes and cyanobacteria, Nature, 2008, vol. 455, no. 7216, pp. 1101–1104. https://doi.org/10.1038/nature07381

    Article  CAS  PubMed  Google Scholar 

  45. Mendes, M.V. Recio, E., et al., Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin, Chem. Biol., 2007, vol. 14, no. 3, pp. 279–290. https://doi.org/10.1016/j.chembiol.2007.01.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Foundation for Assistance to Small Innovative Enterprises (FASIE) program UMNIK 16-12 (project no. 12081GU/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Fokina.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: CL—culture liquid; DYP—dry baker’s yeast powder; FK-506—tacrolimus; HPLC—high-performance liquid chromatography; FKBP12—FK-506-binding protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poshekhontseva, V.Y., Fokina, V.V., Sukhodolskaya, G.V. et al. Study of the Effect of Lower Eukaryotes on Tacrolimus (FK-506) Biosynthesis by the Streptomyces tsukubensis Strain VKM Ac-2618D. Appl Biochem Microbiol 56, 847–853 (2020). https://doi.org/10.1134/S0003683820080062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820080062

Keywords:

Navigation